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Preface

The 5th International Workshop on Learning to Quantify (LQ 2025 – https:
//lq-2025.github.io/) has been held in Porto, PT, on September 15, 2025,
as a satellite workshop of the European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD
2025). While the 1st edition of the workshop (LQ 2021 – https://cikmlq2021.
github.io/) had to be an entirely online event due to the COVID-19 pan-
demic, the 2nd edition (LQ 2022 – https://lq-2022.github.io/), 3rd
edition (LQ 2023 – https://lq-2023.github.io/), 4th edition (LQ 2024
– https://lq-2024.github.io/), and this 5th edition, have been hybrid
events, with presentations given in-presence, and both in-presence attendees
and remote attendees.

The LQ 2025 workshop consisted of the presentations of seven contributed
papers, that had each gone through a rigorous peer-reviewing process by
three reviewers each, and a final collective discussion on the open problems
of learning to quantify and on future initiatives. The present volume con-
tains the text of five of the seven presentations given at the workshop (for
the other two presentations the authors asked for their papers not to be in
the proceedings). We hope that the availability of the present volume will
increase the interest in the subject of quantification on the part of researchers
and practitioners alike, and will contribute to making quantification better
known to potential users of this technology and to researchers interested in
advancing the field.

Mirko Bunse
Pablo González

Alejandro Moreo
Fabrizio Sebastiani
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Classify-and-Count with Prediction Sets:
A Conformal Approach to Label Distribution

Estimation

Evgueni Smirnov and Filip Schlembach

Department of Advanced Computing Sciences,
Maastricht University,

Maastricht, The Netherlands
smirnov@maastrichtuniversity.nl, filip.schlembach@maastrichtuniversity.nl

Abstract. We introduce Mondrian Inductive Conformal Quantification
(MICQ), a set-based approach to learning to quantify that combines
Mondrian conformal prediction with probability class counting (PCC).
For each unlabeled instance X from test bag B, a Mondrian conformal
predictor first constructs a prediction set Γα(X) at miscoverage level
α, and then PCC distributes the instance’s weights to prevalences of
class labels in Γα(X) proportionally to their posteriors. The final class
prevalence estimates are obtained by averaging these weights across all
instances in test bag B. Due to the per-class validity provided by the
Mondrian conformal predictor MICQ remains reliable under prior shift.
Experiments on standard benchmarks with controlled prior shifts demon-
strate that MICQ indeed improves over PCC.

Keywords: Conformal prediction, learning to quantify, prior shift, Mon-
drian inductive conformal classification, probability class counting.

1 Introduction

The problem of learning to quantify (L2Q) is to estimate the distribution of class
labels in a given (test) bag B of unlabeled instances [1]. Standard quantification
methods, such as the probability class counting (PCC) approach, first use a
trained classifier to estimate the posterior probabilities of class labels for the
instances from B, and then compute their average across all instances. While
simple, PCC can be sensitive to prior shift when the class distribution changes
between training and testing while the class-conditional feature distributions
remain stable.

To address this limitation, we propose a quantification method based on con-
formal prediction, a framework for set-valued classification that offers rigorous
finite-sample guarantees [6]. Our approach, called Mondrian Inductive Confor-
mal Quantification (MICQ), employs the class-conditional guarantees of Mon-
drian conformal predictors to provide prevalence estimates that remain reliable
under prior shift.

https://orcid.org/0000-0003-2778-6042
https://orcid.org/0009-0007-7948-0981
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MICQ can be viewed as a conformal extension of PCC. For each instance
X ∈ B and a probabilistic classifier used in PCC, the approach first constructs
a conformal prediction set Γα(X) of plausible labels at a given miscoverage
level α. The contribution (weights) of X to class prevalences is then distributed
among the class labels in Γα(X) in proportion to their posterior probabilities,
modulated by a temperature parameter τ that controls the weight’s sharpness.
The final class prevalence estimates are obtained by averaging these weights
across all instances in the test bag B. By adjusting both the size of the prediction
sets Γα(X) and the concentration of weights, MICQ allows regularization which
has a potential to improve robustness and stability of quantification under prior
shift.

We evaluate MICQ against the standard PCC baseline on three datasets
under controlled prior shift using Dirichlet sampling. Our experiments show
that MICQ consistently achieves lower absolute error than PCC across a range
of conditions.

The rest of the paper is organized as follows. The problem of L2Q and (Mon-
drian) conformal classification are discussed in Section 2. Section 3 presents
MICQ in detail. The experiments are provided and discussed in Section 4. Sec-
tion 5 concludes the paper.

2 Background

This section provides the necessary background to introduce MICQ. It first con-
siders formally the problem of learning to quantify and then (Mondrian) confor-
mal classification.

2.1 Problem of Learning to Quantify

We formalize the problem of learning to quantify (L2Q) as follows. Let X be
the input space and Y a finite class-label set. At training time the phenomenon
under study is given by an unknown distribution P on X ×Y with (X,Y ) ∼ P .
We observe M i.i.d. realizations (xm, ym) of (X,Y ) in X × Y that form the
training data D := {(xm, ym)}Mm=1. At test time, we face another unknown
distribution P ∗ on X ×Y and we observe N i.i.d. realizations xn of X in X that
form a test bag B := {xn}Nn=1. For each class label y ∈ Y we denote the class
priors by πy := P (Y = y) and π∗

y := P ∗(Y = y) and combine them in vectors
π = (πy)y∈Y and π∗ = (π∗

y)y∈Y , respectively. In this context, the problem of L2Q
is to estimate the class priors in π∗, given the training set D and the unlabeled
test bag B 1. Thus, a L2Q estimator is supposed to output vector π̂B for bag B
as close as possible to πB .

In this paper we consider the problem of L2Q for two cases:

– No distribution shift: P = P ∗, and

1 We note that the individual test class labels are never observed and the goal is not
to classify, but to estimate label proportions.
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– Prior distribution shift: P (Y ) ̸= P ∗(Y ) (i.e. πy ̸= π∗
y for any y ∈ Y) and

P (X | Y = y) = P ∗(X | Y = y) for any class label y ∈ Y.

2.2 Conformal Classification

Conformal prediction is a framework for producing set-valued predictions with
rigorous, statistical finite-sample guarantees [6]. Conformal predictors construct
valid prediction sets Γα(X) for any new test point X, meaning that the true
class label Y lies inside the prediction set with probability

Pr
(X,Y )∼P

(Y ∈ Γα(X)) ≥ 1− α (1)

for any user-specified miscoverage rate α ∈ (0, 1). This validity guarantee holds
when there is no distribution shift (P = P ∗) which implies that the training and
test instances are exchangeable [6]. We later show how to maintain validity in
the case of prior distribution shift.

The validity guarantee above is achieved by comparing the nonconformity
score of a test example to those of the instances from the training set D. A
nonconformity score function s : X × Y → R measures how unusual a labeled
instance x ∈ X appears w.r.t to other instances in D. Function s has to be defined
label-symmetric s.t. for any fixed x ∈ X and for any permutation τ : Y → Y,
the set of values {s(x, y) : y ∈ Y} equals the set {s(x, τ(y)) : y ∈ Y}; i.e.,
permuting the class labels does not change the distribution of non-conformity
scores across the class-label space. One common choice for the function s is
s(x, y) = 1 − p̂(y | x), where p̂(· | x) is the posterior probability output by a
probabilistic classifier h.

The most computationally efficient setting for conformal prediction is the
inductive setting [2,3]. In this setting, the training set D is partitioned into two
disjoint subsets, a proper training set Dt = {(Xm, Ym)}Mt

m=1 and a calibration
set Dc = {(Xm, Ym)}Mm=Mt+1 with sizes Mt and Mc = M − Mt, respectively.
A probabilistic classifier h is first trained on the proper training set Dt as a
predictive function that can provide posterior probability estimates p̂(y | X)
for any class label y ∈ Y and input instance X; i.e. h(X) = {p̂(y | X)}y∈Y .
The classifier h is first applied to all the calibration instances (Xm, Ym) ∈ Dc

to obtain set S of their nonconformity scores sm := s(Xm, Ym) = 1 − p̂(Ym |
Xm). Then, whenever we have a new test instance X ∼ P ∗(X) the probabilistic
classifier h provides a posterior class-label distribution {p̂(y | X)}y∈Y . These
class-label probability estimates allow computing their associated nonconformity
scores s(X, y) = 1− p̂(y | X) for X and every possible class label y ∈ Y.

The p-values

py(X) =
#{sm ∈ S : sm ≥ s(X, y)}+ 1

Mc + 1
,

of test instance X for each class label y ∈ Y determine if the class label y is
included in prediction set. If py(X) is greater than a miscoverage rate α, y is
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included in prediction set Γα(X). Thus, the final prediction set for X at α equals

Γα(X) = { y ∈ Y : py(X) > α}.

As stated above, when there is no distribution shift, P = P ∗, and exchange-
ability holds, so does the validity guarantee expressed in Equation (1). However,
when there exists prior distribution shift, P (Y ) ̸= P ∗(Y ), and P (X | Y ) =
P ∗(X | Y ), validity is no longer guaranteed. To address this problem we de-
scribe below the Mondrian conformal predictor (MCP) in the inductive setting.

Mondrian Inductive Conformal Classification Mondrian inductive con-
formal predictor (MICP) is a class-conditional conformal predictor [6]. To han-
dle distribution prior shift, it divides the nonconformity scores of the calibra-
tion instances by class labels y [6]. For each class label y we receive set Sy =
{s(Xm, Ym) : (Xm, Ym) ∈ Dc, Ym = y} with size My. This allows us to compute
the Mondrian class-conditional p-value py(X) of test instance X for candidate
class label y

py(X) =
#{sm ∈ Sy : sm ≥ s(X, y)}+ 1

My + 1
, (2)

and, subsequently, the class-conditional prediction set

Γα(X) = {y : py(X) > α}. (3)

We note that under the prior-shift assumption, test instance X | (Y = y) is
drawn from the same distribution as each calibration instance for class label y,
so the set Sy ∪{s(X, y)} is exchangeable, i.e. every permutation of these My +1
scores has the same joint distribution. Exchangeability implies that the rank Ry

of s(X, y) among the My + 1 scores is uniformly distributed:

Pr(Ry = k | Y = y) =
1

My + 1
, k = 1, . . . ,My + 1.

In this context, following Equation 2, the Mondrian class-conditional p-value
can be redefined as

py(X) =
Ry

My + 1
.

Therefore,

Pr (py(X) ≤ α | Y = y) =
⌊α(My + 1)⌋

My + 1
≤ α.

Because the event Y /∈ Γα(X) is equivalent to py(X) ≤ α,

Pr (Y /∈ Γα(X) | Y = y) = Pr (py(X) ≤ α | Y = y) ≤ α. (4)

Hence,
Pr(Y ∈ Γα(X) | Y = y) ≥ 1− α

for every class y, showing that Mondrian inductive conformal predictors are valid
for every class y.
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3 Mondrian Inductive Conformal Quantification (MICQ)

Mondrian inductive conformal quantification (MICQ) is an approach to estimat-
ing class proportions in an unlabeled dataset. It offers robust estimations in cases
of no distribution shift and distribution prior shift.

3.1 MICQ Description

The pseudocode of MICQ for the training and calibration phase is given in
Algorithm 1. The input required for this phase consists of: a proper training set
(Dt) and a calibration set (Dc). MICQ starts by training a probabilistic classifier
h on the training set Dt. Then it iterates over the calibration instances in Dc

to compute for each instance (Xm, Ym) ∈ Dc its probability estimate p̂(Ym |
Xm) = h(Xm)(Ym) and its nonconformity score s(Xm, Ym) = 1 − p̂(Ym | Xm).
Once the scores are known, MICQ forms the sets Sy of nonconformity scores for
each class. At the end of the training and calibration phase MICQ outputs the
probabilistic classifier h and the set of the calibration nonconformity score sets
{Sy}y∈Y .

Algorithm 1 MICQ – Training and Calibration Phase
Require: Proper training set Dt = {(Xm, Ym)}Mt

m=1, calibration set Dc =
{(Xm, Ym)}Mm=Mt+1

Ensure: Trained classifier h, label-conditional score sets {Sy}
1: Train a probabilistic classifier h on Dt

2: for each calibration instance (Xm, Ym) ∈ Dc do
3: p̂(Ym | Xm) = h(Xm)(Ym)
4: s(Xm, Ym) = 1− p̂(Ym | Xm)
5: end for
6: for each class y ∈ Y do
7: Sy = {s(Xm, y) : (Xm, Ym) ∈ Dc, Ym = y}
8: end for
9: return h and {Sy}y∈Y

The pseudocode of MICQ for the test and quantification phase is given in
Algorithm 2. The input required for this phase consists of an unlabeled test bag
B which class proportions need to be estimated, a user-defined miscoverage rate
(α), a probabilistic classifier h, a set of the calibration nonconformity score sets
{Sy}y∈Y , a miscoverage rate α, and a temperature parameter τ . MICQ starts by
initializing the prevalence value π̂∗

B(y) equal to 0 for all class labels y ∈ Y. Then
it iterates over instances X in the test bag B. For each test instance X and each
possible class y ∈ Y MICQ computes its probability estimate p̂(y | X) = h(X)(y)
using the probabilistic classifier h, and its nonconformity score s(X, y) = 1−p̂(y |
X). Then the p-value for the labeled instance (X, y) is computed following the
MICP procedure (see Equation (2)). Once the p-values py are available for test
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instance X and all class labels y ∈ Y, MICQ computes the prediction set Γα(X)
for X according to Equation (3). The resulting prediction set Γα(X) is composed
of all class labels with p-values greater than α. Once the prediction set Γα(X) is
available for test instance X, the weight wy(X) of X for y is computed according
to:

wy(X) =


p̂(y | X)τ∑

z∈Γα(X) p̂(z | X)τ
, y ∈ Γα(X),

0, otherwise.

where τ is a temperature parameter that controls the weight’s sharpness (τ ≥ 0).
MICQ then updates the prevalence value π̂∗

B(y) for each class label y by
adding the weight wy(X) of X to π̂∗

B(y). Then this entire procedure is repeated
for all instances X in the test bag B. Upon completion, the final vector π̂∗

B that
is output by MICQ gives the estimated prevalence for each class y:

π̂∗
B(y) =

1

n

∑
X∈B

wy(X).

Algorithm 2 MICQ – Test and Quantification Phase
Require: Test bag B = {Xn}Nn=1, set of the calibration nonconformity score sets
{Sy}y∈Y , miscoverage rate α, and temperature parameter τ

Ensure: Estimated prevalence vector π̂∗
B

1: Initialize π̂∗
B(y) = 0 for all y ∈ Y

2: for each test instance X ∈ B do
3: for each class y ∈ Y do
4: p̂(y | X) = h(X)(y)
5: s(X, y) = 1− p̂(y | X)

6: py(X) =
#{sm∈Sy :sm≥s(X,y)}+1

|Sy|+1

7: end for
8: Γα(X) = {y ∈ Y : py(X) > α}
9: for each class y ∈ Γα(X) do

10: wy(X) =
p̂(y | X)τ∑

z∈Γα(X) p̂(z | X)τ

11: π̂∗
B(y)← π̂∗

B(y) + wy(X)
12: end for
13: end for
14: for each class y ∈ Y do
15: π̂∗

B(y)← 1
N
· π̂∗

B(y)
16: end for
17: return π̂∗

B = (π̂∗
B(y))y∈Y
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3.2 Robustness to Prior Shift

MICQ is robust to prior shift ; i.e. when there are changes in class priors πy ̸= π∗
y

while the class-conditional distribution P (X | Y ) = P ∗(X | Y ) remain fixed.
This property is mainly due to class-conditional calibration of the Mondrian
conformal predictor employed in MICQ. This predictor splits the calibration
scores by class label (Sy for each y) ensuring that the feature distribution within
each class is the same in training and test. Thus, any multiset Sy ∪ {s(X, y)}
stays exchangeable for every class y and the class-conditional p-value py(X) =
#{s∈Sy :s≥s(X,y)}+1

|Sy|+1 satisfies the finite-sample coverage guarantee Pr
(
Y ∈ Γα(X) |

Y = y
)
≥ 1− α even when class priors change.

3.3 Regularization in MICQ

MICQ has two parameters that jointly control its bias and variance:

– Miscoverage rate α (set size). Smaller α yields larger prediction sets
Γα which spreads each instance’s contribution over more class labels and
thus decreases variance and increases bias (toward more uniform class preva-
lences). Larger α yields smaller sets Γα, and, thus, sharpens contributions
and reduces bias at the cost of higher variance.

– Temperature parameter τ (within-set concentration). For a fixed
set Γα, when τ approaches 0+, the weight wy for any class label y ∈ Γα

becomes closer to 1/|Γα| which increases bias and decreases variance. When
τ approaches +∞, the weight wy becomes closer to 1 for class label y with
maximal posterior probability (y = argmaxz∈Γα) and 0 for the remaining
class labels. This reduces bias when posterior probabilities are informative
and can increase variance.

The two parameters interact: the influence of τ is most pronounced when
sets |Γα| > 1 (moderate α). In this case we need to choose (α, τ) so that the
sets are informative sets (through α) and appropriately concentrated within-set
weights (through τ). In this context, we note that when sets Γα are singletons,
τ has no effect.

3.4 Remark on Fisher Consistency

Fisher consistency requires that, when applied to the true test distribution, the
expected estimate equals the true prevalence for all y. When α = 0 and τ = 1,
the MICQ reduces to PCC, which is Fisher consistent.

For any α > 0, however, Fisher consistency no longer holds. By construction,
the conformal set Γα(X) excludes the true label with probability at most α
(exactly α under continuous scores or randomized p-values), so the correct class
receives weight 0 in a nonzero fraction of cases. In the remaining cases, the correct
label is included but its contribution can be diminished due to the within-set
normalization.
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4 Experiments

This section evaluates and compares the performances of the MICQ quantifier
and the standard probability class counting (PCC) quantifier. It provides exper-
imental setup, experiment results, and discussion.

4.1 Experimental Setup

The L2Q quantifiers used in the experiments are the MICQ quantifier and PCC
quantifier. To ensure model comparability both quantifiers employ the same
base classifier the Gaussian Naïve Bayes. The Mondrian inductive conformal
predictor in MICQ employs 67%/33% split, meaning that 67% of the data is
used as training data Dt of the base classifier (Gaussian Naïve Bayes) and 33%
of the data is used for the calibration set Dc.

4.2 Datasets

We conduct experiments on three standard benchmarking datasets from scikit-
learn [4]. The datasets are described in Table 1.

Table 1. Datasets used in experiments

Dataset # Classes # Features # Instances

Iris 3 4 150
Breast Cancer 2 30 569
Digits 10 64 1797

4.3 Validation Protocol

We follow a 10-fold stratified cross-validation protocol. To simulate realistic
quantification tasks under prior shift, we generate bootstrap bags as follows:

– For each test fold, we generate T = 20 test bags of the same size as the test
set.

– Bags are sampled with replacement from the test fold.
– Each bag’s class proportions are drawn from a Dirichlet distribution with

concentration parameter αDir ∈ {10, 100, 1000} to simulate various prior
shift conditions. We note that bigger (smaller) values for αDir imply smaller
(bigger) prior shifts respectively.
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4.4 Quantification and Evaluation

For each test bag, we compute the true class prevalences π∗, the PCC estimates,
and the MICQ estimates. Performance is evaluated using Mean Absolute Error
(MAE):

MAE(p̂B ,π
∗) =

1

|Y|
∑
y∈Y

∣∣π̂B(y)− π∗
y

∣∣,
We study MAE as a function of miscoverage level α ∈ [0.005, 0.500] (step size

= 0.005) to observe how the conformal miscoverage rate α acts as a regularization
parameter in MICQ.

Table 2. Summary of experimental settings

Parameter Value / Description

Base Classifier Gaussian Naïve Bayes
Cross-Validation 10-fold Stratified CV
Calibration Ratio 0.33
Bags per Fold T = 20
Bag Size Equal to test fold size
Bag Sampling With replacement (bootstrap)
Dirichlet Parameters αDir ∈ {10, 100, 1000}
Miscoverage Levels α ∈ [0.005, 0.500]
Temperature τ = 2
Evaluation Metric Mean Absolute Error (MAE)

4.5 Results and Discussion

Figure 1 presents the results for the Iris, Breast Cancer, Digits datasets under
varying Dirichlet prior strengths. For the Iris and Digits datasets, MICQ con-
sistently outperforms the PCC baseline, with its MAE curve lying below the
horizontal PCC baseline for all miscoverage levels α. In contrast, on the Breast
Cancer dataset the picture is different: for small miscoverage levels (α < 0.12)
the MICQ’s MAE is below the PCC baseline with exception of very low α val-
ues. For α > 0.12 MICQ is worse than PCC. The Breast-Cancer curve also
exhibits a spike near α ≈ 0.07 due to discrete p-values and small per-class cali-
bration counts. Thus, we may conclude that MICQ can outperform PCC across
a spectrum of prior shift scenarios, from no shift to substantial shift.

The results presented in Figure 1 show a clear bias-variance trade-off in
Mondrian-weighted MICQ. For very small miscoverage rate α, prediction sets
are large, leading to low variance but high bias and thus higher MAE. For mod-
erate α, prediction sets shrink, bias drops, and MAE reaches its minimum, often
outperforming the PCC baseline. For large α, MAE rises again due to high vari-
ance from prediction sets containing mostly single class labels. The trade-off
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pattern holds across varying degrees of prior shift (αDir = 10, 100, 1000) and it
confirms that Mondrian-weighted MICQ balances bias and variance and adapts
well to prior shift.

5 Conclusion

We introduced Mondrian Inductive Conformal Quantification (MICQ), a sim-
ple and effective set-based extension of the probability class counting (PCC)
approach to learning to quantify. By leveraging prediction sets from Mondrian
conformal prediction, MICQ assigns soft fractional weights to classes, enabling
accurate prevalence estimation under prior shift. We showed empirically that
MICQ is capable of outperforming PCC. These results demonstrate that confor-
mal prediction offers a way to regularize quantification and ensure robustness to
distributional changes.

Future work may continue in two possible directions. The first one is to apply
conformal prediction to more advanced L2Q techniques. The second direction is
to apply conformal predictors specifically designed for covariate shifts [5].
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Fig. 1. Mean Absolute Error of MICQ vs. PCC across miscoverage levels for different
Dirichlet strengths. From top to bottom: αDir = 1000, αDir = 100, αDir = 10.
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Abstract. This paper explores efficient methods for deriving confidence
intervals in quantification, the area of machine learning concerned with
estimating class prevalence values. By focusing on computationally effi-
cient strategies, we propose a robust framework for quantifying uncer-
tainty. The key idea is to disentangle the two main phases of current ag-
gregative quantifiers (classification followed by aggregation) and apply
bootstrap only to the second phase. We investigate different methods
for constructing confidence regions, including confidence intervals, confi-
dence ellipses in the simplex, and confidence regions in the transformed
Centered Log-Ratio space. Additionally, we examine various bootstrap
strategies, including model-based, population-based, and a combined ap-
proach. Our results demonstrate the effectiveness of combining model-
based and population-based bootstrap approaches, particularly when
used with traditional confidence intervals, while also achieving signifi-
cant efficiency gains compared to a naive application of bootstrap.

Keywords: Confidence intervals · Class prevalence estimation · Quan-
tification.

1 Introduction

Many disciplines, like the social sciences [16], epidemiology [18], ecological mod-
elling [1], and sentiment analysis [12], are interested in knowing the class preva-
lence distribution of the population under study. Quantification is a key branch
of supervised machine learning that focuses on estimating the prevalence of class
labels in a population [13,7]. Such methods are called “quantifiers” and, just like
with any other point estimators, their predictions are inevitably affected by er-
ror. It would therefore be desirable to accompany the outputs of a quantifier
with a measure of uncertainty, in the form of confidence regions [24].

A standard method used in statistics for deriving confidence regions is boot-
strap [6]. Bootstrap is a resampling method used to estimate the distribution of
a statistic by repeatedly sampling with replacement from the observed data. It
allows for the construction of confidence regions by calculating the statistic of
interest (in our case, the sample prevalence) across multiple resampled bags and
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determining the region that captures the desired percentage of the resampled
estimates (e.g., 95% of these).

In this report, we analyse how to apply bootstrap to quantification. In par-
ticular, we focus our attention to one class of quantifiers called aggregative quan-
tifiers (see §4.2 in [7]), which rely, in order to predict class prevalence values, on
the outputs of a surrogate classifier. This family of methods seems appealing for
our scope since the procedure follows a pipeline of two steps: the learning phase
comes down to (i) training a classifier which operates at the individual level, and
(ii) fitting an adjustment method which operates at the aggregate level; while
the inference phase can be subdivided into (i’) generating classifier predictions
for each test instance, and (ii’) applying the adjustment function to the sample
to produce prevalence estimates. Steps (i’) and especially (i) are computational
heavier than steps (ii’) and (ii). Note thus that this two-step process is convenient
for deriving confidence intervals via bootstrap since it offers us the possibility to
carry out steps (i) and (i’) only once, and apply bootstrap only in steps (ii) and
(ii’), thus substantially speeding up the otherwise unaffordable computational
cost.

The rest of this report is structured as follows. In Section 2 we overview past
work on confidence intervals in quantification. Section 3 is devoted to explaining
our application of bootstrap to aggregative quantifiers. Section 4 reports the
experiments we have carried out while Section 5 wraps up and offers pointers
for future research.

2 Related Work

The use of bootstrap in quantification is not novel. Probably, the first published
record discussing the application of bootstrap for deriving confidence intervals
in quantification is by [16]. However, the authors only mention the application
of “standard bootstrapping procedures” without providing specific clues on how
they apply it.

[17] proposes a generative probabilistic model for text quantification which
assumes a document’s text is generated conditional on the document label. As
the generative model the authors explore multinomial Naïve Bayes and addi-
tive log-linear methods. Inference is carried out via marginal log-likelihood over
the priors. While this paper uses real-world data in the experiments, these are
restricted to binary quantification and textual data.

[4] propose a method called “Error-Adjusted Bootstrapping” which also re-
lies on bootstrap resampling. The idea is to use a (crisp) classifier to issue label
predictions for all the instances of the bootstrap samples. However, these labels
are not directly used to obtain bootstrap prevalence predictions by simply aver-
aging. Instead, the authors propose to randomly sample the predicted instance
label based on the misclassification-rates distribution P (Y |Ŷ ) that characterizes
the classifier, which is modelled on training data. However, as noted by [24],
this method is not appropriate for constructing confidence intervals in the pres-
ence of prior probability shift (which is the focus of our work –Section 3.1). The
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reason is that the conditional distribution P (Y |Ŷ ) is not stationary under such
conditions. Also [4] limits the experimental section to binary quantification.

[24] carries out a simulation study in which several quantifiers are tested in
their ability to derive confidence intervals and prediction intervals. This paper
also clarifies that there is a distinction between confidence intervals and predic-
tion intervals [19] which is often neglected in the literature. Be it as it may, the
author himself raises questions on the necessity of pushing forth this distinction
in practical applications of quantification. However, this study is limited to bi-
nary quantification only, and to the idealizations typical of simulated conditions
that may obscure real-world complexities of the data.

Other works exist which tries to derive confidence intervals analytically. One
example is by [9], which propose the “ratio estimator” method for quantification.
The authors derive confidence intervals by analysing the asymptotic properties
of the method, thus avoiding iterative resampling procedures. As a downside, the
method is specific for the ratio estimator quantifier. In contrast, the method we
propose is generic and applicable to any of the “aggregative” methods described
in the quantification literature (by far, the largest class of methods in the field).

[5] shows that the Probabilistic Classify and Count method (PCC), a method
that predicts prevalence values by averaging across the posterior probabilities
on each data point that a probabilistic classifier generates [2], can be endowed
with confidence intervals. The idea resides in treating this point estimate as the
mean of a Poisson binomial distribution of the posterior probabilities, for which
confidence intervals can be computed easily. However, PCC is known to be a
weak quantifier under prior probability shift conditions [14].

Recently, a (tractable) Bayesian approach for deriving confidence intervals
around prevalence point estimators based on black-box classifiers is presented
in [25]. While this method caters for multiclass problems, it also suffers from a
high computationally cost since the method relies on Hamiltonian Markov Chain
Monte Carlo sampling.

3 Method

In this section, we turn to describe a methodology for applying bootstrap to
aggregative quantification methods. First, we set down the notation we use.

3.1 Notation

Let q : NX → ∆n−1 be a function (a quantifier) that maps bags of elements
from the input space X into class label distributions, i.e., into elements of the
probability simplex ∆n−1 ≡ {(π1, . . . , πn) | πi ≥ 0,

∑n
i=1 πi = 1} where n is the

number of classes and πi represents the proportion of elements from the bag that
belong to class i, with Y = {1, . . . , n} the classes of interest.

Given an unlabelled test set U with (unknown) prevalence π∗ ∈ ∆n−1, we are
interested in training a quantifier q such that q(U) = π̂ is a good approximation
of π∗ in terms of any given divergence metric.
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To this aim, we assume to have access to a labelled training set L = {(xi, yi)}li=1

of l labelled datapoints xi ∈ X , yi ∈ Y. We also consider a learner device
Ψ : (X × Y)l → Q that takes as input a training set and generates (i.e., learns)
a quantifier function q ∈ Q from a class of quantification functions Q.

We assume to be in the presence of prior probability shift (PPS), a type of
dataset shift in which the training distribution P and the test distribution Q are
different, but in which the following assumptions are made:

P (Y ) ̸= Q(Y )

P (X|Y ) = Q(X|Y )

where Y is the random variable taking values on the output space Y and X is
the random variable taking values in the input space X .

3.2 Bootstrap

This work aims to provide not only a point estimate but also a confidence region
around it. Bootstrap is a standard and versatile method for constructing confi-
dence regions by resampling data [6]. The idea is to uniformly draw a series of
samples U1, . . . , Um from U , with replacement and with |Ui| = |U |, and to use q
to generate the corresponding predictions π̂1 = q(U1), . . . , π̂m = q(Um), which
are then used to define the confidence region around the final point estimate
which is finally computed as π̂ = 1

m

∑m
i=1 π̂i. This way of deriving confidence

intervals based on resampling the test set is called the population-based approach.
A different way for deriving confidence regions is the so-called model-based

approach, in which the resampling is instead applied to the training set L. This
way, a series of training samples L1, . . . , Lm′ is generated from L, with replace-
ment and with |Li| = |L|. The series of point estimates are then computed as
π̂1 = q1(U), . . . , π̂m′ = qm′(U), where qi = Ψ(Li). The final estimate is com-
puted in the usual way: π̂ = 1

m′

∑m′

i=1 π̂i, and the series of estimates π̂1, . . . , π̂m′

is used to derive confidence regions around π̂.
Yet a third method for deriving confidence regions comes down to combining

the population-based approach with the model-based approach. In this way, we
generate a grid of m×m′ point estimates G = [gij ] = qj(Ui) where qj = Ψ(Lj).
The point estimate is thus computed as π̂ = 1

mm′

∑m
i=1

∑m′

j=1 gij , and all the
estimates in G concur in deriving a confidence region around π̂.

Bootstrap is Quantification Experiments Due to repeated resampling,
bootstrap methods incur a considerable computational cost, specially when a
model-based approach is adopted. A typical value for m or m′ is 500 repetitions.
Generating 500 predictions for a test set is already costly (population-based
approach), but the problem is even more exacerbated if the number of train-
ings rounds increases to 500 (model-based approach). When a combination of
population-based and model-based approaches are adopted, the prohibitive num-
ber of combinations 500×500 is often reduced to 100×100. Still, the cost seems
unaffordable from a computational point of view.
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The latter is especially true in a discipline like quantification, in which the
evaluation of a model often consists of confronting the quantifier against many
test samples. The reason is that one test set counts as only one test instance for
a quantifier; this is in contrast to other disciplines like classification, or regres-
sion, in which one test set represents a number of test instances that equals the
cardinality of the set.

Quantification papers do often resort to sampling protocols to generate, out
of a test sample, many samples each characterized by (possibly radically) differ-
ent prevalence values. The number of test samples thus generated is often high
in order to allow for statistically significant results. Typical values encountered
in the quantification literature easily reach 100 samples [20], 1000 samples [21],
or even more [8,22]. The aforementioned “resampling” cost that bootstrap incurs
(500, or 100× 100 repetitions, depending on the case) must therefore be under-
taken for each test sample extracted from a dataset and for each dataset under
consideration (modern papers involve dozens of datasets [22,23,21]). With this
landscape, the adoption of bootstrap in quantification clearly seems impractical.

Bootstrapping Aggregative Quantifiers In this study, we propose a variant
of bootstrap applied on a specific class of quantification methods called aggrega-
tive (see §4.2 in [7]). These methods are such that the training procedure can be
disentangled as follows:

1. Learn a crisp (resp. soft) classifier h ∈ H, i.e., a functional h : X → Y (resp.
h : X → ∆n−1) using a learner device C : (X ×Y)l → H and a training set L;
then use h to generate classifier predictions for each element in the training
set via cross-validation, thus obtaining L̃ = {(h(xi), yi) : (xi, yi) ∈ L}.

2. Learn an adjustment function A : (Y × Y)l → ∆n−1 (resp. A : (∆n−1 ×
Y)l → ∆n−1) using the classifier’s outputs L. The adjustment function is
responsible for generating, out of the classifier predictions, the final class
prevalence estimates.

Similarly, the inference procedure can be decomposed as:

1. Use h to generate classifier predictions for all instances in the test set Ũ =
{h(xi) : xi ∈ U}.

2. Return the prevalence values generated via A(Ũ).

Note that the first step of the training phase, and the first step of the inference
phase, are often much more expensive, from a computational point of view, than
the corresponding steps number 2. We take advantage of this characteristic and
propose to apply:

– Model-based bootstrap:
• During training, carry out step 1 once and for all, and apply resampling

only during step 2, i.e., generating many samples to L̃1, . . . , L̃m′ out of
L̃, thus obtaining a series of adjustment functions A1, . . . , Am′ .
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• During inference, generate Ũ (step 1) and generate a series of point esti-
mates A1(Ũ), . . . , Am′(Ũ) applying step 2 on every adjustment function.

– Population-based bootstrap:
• During training, run steps 1 and 2 of the training procedure the usual

way.
• During inference, generate all classifier predictions (step 1) only once,

and then apply resampling over Ũ for step 2, thus generating a series of
bags Ũ1, . . . , Ũm with which a series of point estimates A(Ũ1), . . . , A(Ũm)
is computed.

– Combined model-based and population-based approach: a trivial combina-
tion of the above methods.
• During training, carry out step 1 once and for all, and apply resampling

only during step 2, i.e., generating many samples to L̃1, . . . , L̃m′ out of
L̃, thus obtaining a series of adjustment functions A1, . . . , Am′ .

• During inference, generate all classifier predictions (step 1) only once,
and then apply resampling over Ũ for step 2, thus generating a series
of bags Ũ1, . . . , Ũm. Generate a grid of point estimates pairing every Ai

(1 ≤ i ≤ m′) adjustment function with every Ũj (1 ≤ j ≤ m) bag.

3.3 Methods for Constructing Confidence Regions

In Section 3.2 we have discussed three bootstrap-based techniques for obtaining
a series of point estimates. Regardless of the method used to generate the series,
we will henceforth denote these series as π̂1, . . . , π̂m, where m represents the
total number of estimates, assuming an abuse of notation for simplicity. In this
section, we turn to discuss methods for constructing confidence regions based on
these estimates. All confidence regions are constructed around the final estimate
π̂ = 1

m

∑m
i=1 π̂i with a certain confidence value α. We will denote CRα a generic

confidence region constructed around the mean estimate at confidence level α.

Confidence Intervals Perhaps the simplest way to derive confidence regions
are the confidence intervals (CI) generated via bootstrap quantiles.

This method is simple and non-parametric. The idea is to consider each class
prevalence as an independent random variable of unknown distribution, and
derive their confidence intervals using the empirical distribution generated via
bootstrap.

We will therefore consider the (independent) random variable Pi which takes
on values [π̂1]i, . . . , [π̂m]i, where [·]i is the operator that returns the prevalence
of the ith class in the input vector.

For each such random variable we arrange the bootstrap estimates in ascend-
ing order to obtain their empirical distribution, and identify the lower (Li) and
upper (Ui) bounds at confidence (1− α)% (e.g., at 95%) as the

(
α
2

)
percentile

(e.g., 2.5%) and the
(
100− α

2

)
percentile (e.g., 97.5%) of the sorted distribu-

tion. For instance, given a dataset with a prevalence estimate of 0.65 and a
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bootstrap-derived distribution of prevalence values ranging from 0.55 to 0.75,
the 95% confidence interval would be [0.56, 0.74].

Given the bounds Li,Ui (1 ≤ i ≤ n) for all classes, we can determine whether
a prevalence vector π = {π1, . . . , πn} lies within the confidence region by com-
puting:

CIα(π) =

{
1 : Li ≤ πi ≤ Ui , ∀i, 1 ≤ i ≤ n
0 : otherwise

(1)

Despite its simplicity, this method presents some drawbacks. First, it as-
sumes the random variables are independent; however, we know the random
variables take on values drawn from a more complex structure, the probability
simplex, which imposes certain contraints. Second, the confidence region forms
a hyper-rectangle (with each dimension representing the confidence interval of
one variable) which intersects but also extends outside the probability simplex
(see Section 3.4).

Confidence Ellipse in ∆n−1 A typical procedure for deriving confidence re-
gions in multivariate spaces is to define a confidence (hyper-)ellipse (CE) around
the point estimate π̂.

A typical procedure for checking whether a prevalence vector π belongs to
the confidence ellipse around π̂ comes down to assuming π̂i ∼ N (µ, Σ), with µ
the (unknown) population mean which is estimated as π̂, and Σ the (unknown)
population covariance matrix which is estimated with the sample covariance
matrix S, and then check whether:

CEα(π) =

{
1 : (π − π̂)

⊤
S−1 (π − π̂) ≤ χ2

(n−1)(1− α)

0 : otherwise
(2)

where χ2 is the chi-squared distribution, S−1 is the inverse of the covariance
matrix S (aka the precision matrix), and α is the desired confidence level (e.g.,
α = 0.05 for 95%).

While this method guarantees that the ellipse lies on the probability simplex
(more on this in Section 3.4), it rests upon the incorrect assumption that the
prevalence estimates are normally distributed. We know all our estimates lie on
the probability simplex, which clashes with this assumption.

Confidence Ellipse in the CLR-space Confidence intervals and confidence
ellipses do not take into account the inner geometry of the probability simplex
space (i.e., all components must be positive and sum up to one). A more sophis-
ticated way to derive confidence regions comes down to mapping the prevalence
estimates onto an unconstrained Euclidean space using the Centered Log-Ratio
(CLR) transformation. We call CT this confidence region in the transformed
space. The CLR transformation T : ∆n−1 → Rn is given by:

T (π) =

[
log

π1

g(π)
, . . . , log

πn

g(π)

]
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where g(π) is the the geometric mean of π.
We can define the confidence ellipse around the new center π′ = 1

m

∑m
i=1 T (πi)

as the region containing all (CLR-transformed) points verifying:

CTα(π) =

{
1 : (T (π)− π′)

⊤
(S′)−1 (T (π)− π′) ≤ χ2

(n−1)(1− α)

0 : otherwise
(3)

where S′ is the sample covariance matrix of the CLR-transformed estimates
T (π1), . . . , T (πn), and χ2 is the chi-squared distribution, as before. Note that the
degrees of freedom of the distribution is still (n−1) since the original components
are constrained.

3.4 Goodness of the Confidence Region

Confidence regions are typically evaluated in terms of the coverage (C) and their
amplitude (A).

The coverage measures the fraction of experiments in which the true preva-
lence value was contained in the confidence region (the higher, the better), and
is simply computed as:

C =

∑E
i=1 CRα(π

∗
i )

E
(4)

with E the total number of experiments, and CRα any of the regions discussed
in Section 3.3 (Equations 1, 2, and 3), independently generated for the training
set L and test set U of each experiment.

The amplitude measures the portion of the probability simplex that is in-
cluded in the confidence region (the smaller, the better), and is computed as:

A =
V (CRα)

V (∆n−1)
(5)

with V a function measuring the volume of a space.
While computing the volume of the simplex is trivial, and comes down to

calculating V (∆n−1) = 1
(n−1)! , computing the volume of a confidence region is

not that easy. For example, one might be tempted to compute V (CIα) simply
as

∏n
i=1(Ui − Li). However, this would be misleading, since the volume we are

computing corresponds to a region that does not lie within the simplex, but in
[0, 1]n (the region intersects with the simplex, but covers also part of the space
outside the simplex).

Similarly, one might be tempted to compute

V (CEα) =
π

n−1
2

Γ (n−1
2 + 1)

n−1∏
i=1

√
λi · χ2

n−1(1− α) (6)
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with π the pi constant (not to be confused with a prevalence value), λi the ith
eigenvalue of the covariance matrix.3 Again, this would be incorrect. The reason
is that a confidence ellipse generated from points on a simplex may not be entirely
confined within the simplex. While the centre of the ellipse is guaranteed to lie
within the simplex, the ellipse’s edges could well extend beyond the simplex’s
boundaries; see Figure 1.

0

1

1

1

Fig. 1: Ellipse in a 2-dimensional simplex. The center is contained in the simplex,
but part of the ellipse lies outside it.

Finally, note that V (CTα) would effectively account for the volume of the
ellipse in the CLR-space, but there is no simple way to transform back such
scalar to the original space.

We therefore propose a simple, yet effective method, to approximate the
amplitude, based on Monte Carlo sampling. To this end, we generate t = 10, 000
random prevalence points from the probability simplex, uniformly at random,
and compute the fraction of these that belong to the region. That is:

A ≈
∑t

i=1 CRα(π̃i)

t
, π̃i ∼ Dir(1n) (7)

with 1n an n-dimensional vector of ones, the concentration parameter of the
Dirichlet distribution. This method is generic, and is valid for CIα, CEα, and
CTα.

4 Experiments

In this section, we turn to describe the experiments we have carried out in order
to evaluate our methods for deriving confidence regions.
3 Only (n − 1) such eigenvalues are considered, since the last one is 0, given that

the ellipse lies in an (n − 1)-dimensional space, and thus has one null semiaxis
corresponding to the nth dimension.
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4.1 Datasets

The datasets we have used are taken from the publicly available UCI Ma-
chine Learning repository4, and consists of 26 binary datasets and 24 multiclass
datasets. The statistics of these datasets can be consulted online.5

For each dataset, we randomly extract 70% of the data for training our
quantifiers, and use the remaining 30% for testing them. In the few cases in
which the training set exceeds 25,000 instances, we randomly use 25,000 for
training and the rest for testing.

Each value reported in the tables is the aggregation of 100 test samples of 500
instances each, drawn at random with the artificial prevalence protocol (APP)
described in [22]. This protocol works by uniformly sampling prevalence values
from the probability simplex, and then extracting, from the test pool, bags realiz-
ing these prevalence values. The APP protocol thus generates samples at widely
varying prevalence values effectively representing cases of prior probability shift.

4.2 Evaluation metrics

In order to evaluate the quality of the quantifiers’ predictions, we adopt the Abso-
lute Error (AE) of the prevalence predictions with respect to the true prevalence
values. AE is given by:

AE(π∗, π̂) =
1

n

n∑
i=1

|π∗
i − π̂i|

we report the Mean Absolute Error (MAE) across all experiments.
We evaluate the quality of the confidence regions by means of the coverage (C,

see Equation 4), i.e., the proportion of experiments in which the true prevalence
was contained in the confidence region, and the amplitude (A, see Equation 7),
a measure of the proportion of the simplex’ volume that the region includes; see
Section 3.4 for further details.

A good confidence region is one that displays high coverage and small ampli-
tude. There is, to the best of our knowledge, no standard measure for combining
both metrics into a single one. We propose a measure of goodness that we call
Log-Ratio Goodness (LRG) and that we define as:

LRG(CRα) = log

(
1 +

C
A+ ϵ

)
(8)

with ϵ a small value to prevent zero division in degenerated null regions.
In all cases, we consider confidence regions at a confidence level of α = 0.05.

4 https://archive.ics.uci.edu
5 https://hlt-isti.github.io/QuaPy/manuals/datasets.html#
uci-machine-learning

https://archive.ics.uci.edu
https://hlt-isti.github.io/QuaPy/manuals/datasets.html#uci-machine-learning
https://hlt-isti.github.io/QuaPy/manuals/datasets.html#uci-machine-learning
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4.3 Quantification methods

We choose three representative aggregative quantifiers for testing the confidence
regions (but any aggregative quantifier can be used in place):

– ACC: Adjusted Classify and Count [11] uses a crisp classifier h to com-
pute an estimate of the class priors (by classifying and counting), which
is then corrected by taking into consideration the matrix of the misclas-
sification rates of the classifier Mh. The adjustment procedure (in which
model-based bootstrap is applied) thus amounts to constructing the mis-
classification rates matrix Mh, while the aggregation phase (in which the
population-based bootstrap is applied) consists of correcting the estimate
by inverting the misclassification rates matrix.

– PACC: Probabilistic Adjusted Classify and Count [2] is the probabilistic
counterpart of ACC, in which the classifier h is a soft one, and in which the
counts and the misclassification rates matrix are computed on soft counts
(posterior probabilities).

– DM: Distribution Matching is a multiclass extension, as proposed by [10,3], of
the Hellinger Distance y (HDy) method proposed by [15]. In a nutshell, DM-
based approaches try to reconstruct the distribution of the test datapoints by
looking for the closest mixture of the class-conditional distributions of the
training datapoints. Distributions are modelled as independent univariate
histograms. The mixture parameter yielding the best such matching, in terms
of the HD is an estimate of the sought class prevalence values.

In all cases we use Logistic Regression as the underlying classifier. Logistic
Regression has become very popular in the quantification literature for its ability
to produce well-calibrated posterior probabilities and due to the fact that is has
shown good performance across a large variety of problems, a fundamental aspect
for obtaining good confidence regions [24].

We took the implementations of these methods made available in the QuaPy
software package [20]. Our implementations of the confidence regions and boot-
strap methods as well as all the required scripts to reproduce our experiments
can be accessed via GitHub.6 The method has been integrated into QuaPy and
will be made available in the upcoming v0.2.0; a pre-release is available at the
devel branch 7.

4.4 Results

In this section we report on the results we have obtained. In the tables to come
we use the following conventions. Each table reports the quantification errors
(MAE, lower is better), accompanied by the coverage (C, higher is better) and
their amplitude (A, lower is better); bold indicates the best value in each case.
A summary of all the binary and multiclass results is reported in Tables 1 and
6 https://github.com/AlexMoreo/ConfidenceIntervalsQuantification
7 https://github.com/HLT-ISTI/QuaPy/blob/devel/quapy/method/confidence.py

https://github.com/AlexMoreo/ConfidenceIntervalsQuantification
https://github.com/HLT-ISTI/QuaPy/blob/devel/quapy/method/confidence.py
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Table 1: Summary of binary results grouped by bootstrap and confidence region.
Symbol ↑ marks metrics for which the higher the better, while ↓ indicates the
lower the better.

Bootstrap Conf. region MAE ↓ C ↑ A ↓ LRG ↑

None None 0.057 – – –

population-based
CI 0.055 0.710 0.137 1.617
CE 0.055 0.643 0.202 1.298
CT 0.055 0.601 0.176 1.221

model-based
CI 0.054 0.871 0.210 1.767
CE 0.054 0.744 0.255 1.363
CT 0.054 0.662 0.263 1.147

combined
CI 0.055 0.871 0.211 1.767
CE 0.055 0.747 0.258 1.357
CT 0.055 0.627 0.245 1.096

Table 2: Summary of multiclass results grouped by bootstrap and confidence
region. Symbol ↑ marks metrics for which the higher the better, while ↓ indicates
the lower the better.

Bootstrap Conf. region MAE ↓ C ↑ A ↓ LRG ↑

None None 0.054 – – –

population-based
CI 0.053 0.560 0.033 5.148
CE 0.053 0.611 0.052 4.666
CT 0.053 0.641 0.093 4.083

model-based
CI 0.048 0.723 0.076 5.765
CE 0.048 0.772 0.100 5.141
CT 0.048 0.807 0.209 4.145

combined
CI 0.048 0.726 0.076 5.769
CE 0.048 0.753 0.093 4.833
CT 0.048 0.789 0.205 3.809

2, in which all methods and datasets have been aggregated for the reader’s
convenience. The detailed tables displaying the individual performance of each
quantification method in each dataset can be consulted in the additional mate-
rial.

These results reveal some interesting findings. First, that in most cases, the
point estimate generated by averaging across all bootstrap estimates often im-
proves over the raw estimate obtained by the original method, which directly
provides one single estimate. However, this is not always true if we take a closer
look at the individual experiments (see the additional material), and there is one
case (DM in the binary setting) where the original estimate is better, in terms
of MAE, than those provided through bootstrap. In other cases, despite being
worse, the results are statistically similar (3 cases out of 6).
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Regarding the different ways for applying bootstrap (population-based, model-
based, or combined), it seems that, in terms of MAE, there are no significant
differences on the quality of the final estimates in the binary setup. However,
the model-based and the combined approach seems to deliver slightly better
results in the multiclass case, although the differences in performance are not
statistically significant.

In terms of coverage (C), the best bootstrap strategy seems to be the model-
based one, while there is no clear winner within the various strategies for deriving
confidence regions. What clearly emerges from the results is that there is a strict
order CI ≻ CE ≻ CT in the binary setup (with A ≻ B meaning “A outperforms
B”), while this order is reversed in the multiclass case.

While it may seem counter-intuitive that the coverage consistently falls be-
low the nominal level of 1− α = 0.95, this stems from a mismatch between the
assumed distributional framework (prior probability shift) and the i.i.d. assump-
tion underlying the standard bootstrap. As a result, resampling methods such
as the bootstrap must be interpreted with caution. In practice, the bootstrap
can approximate the variability of a quantifier with respect to the observed test
sample, but it does not account for the additional uncertainty induced by distri-
butional shift. In other words, it fails to fully reproduce the different sources of
variability. Bootstrap intervals therefore reflect the internal stability of the quan-
tifier given the available data, but they should not be interpreted as providing
a formal coverage guarantee for the true prevalence. We are currently investi-
gating alternative bootstrap schemes aimed at incorporating distributional shift
into the variability estimation, with the goal of achieving more reliable coverage
properties.

In terms of amplitude (A) we observe a tendency towards CI ≻ CE ≻ CT.
While there are few exceptions to this, CI always stands out in its ability to
display low amplitude.

The combined evaluation of confidence regions LRG clearly indicates CI is
the top performing method for deriving confidence regions with good coverage
and small amplitude, simultaneously.

Overall, the experiments we have carried out seem to indicate the best
strategy for generating confidence regions around the point estimate is the ap-
proach that combines both population-based and model-based bootstrap meth-
ods, paired with confidence intervals.

4.5 Execution times

A novel aspect of our approach resides in the fact that bootstrap is only applied
to the pre-classified instances that concur in training the aggregation function
(thus avoiding the cost of training different classifiers), and/or to pre-classified
instances that are given as input to the aggregation function (thus avoiding the
cost of classifying each bootstrap sample).

In this section, we report clocked times to showcase the improvements in
efficiency that our proposal brings about with respect to a naive implementation
of bootstrap in quantification, i.e., with respect to an implementation that, for
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Table 3: Summary of clocked times in binary experiments grouped by bootstrap
method.
Bootstrap Implem. Train time (s) (%Rel.Red) Test time (s) (%Rel.Red)

None QuaPy 0.023 – 0.003 –

population-based Naive 0.023 – 1.681 –
Ours 0.023 (=) 1.311 (-22.02%)

model-based Naive 11.461 – 1.681 –
Ours 0.287 (-97.50%) 1.360 (-19.10%)

combined Naive 2.292 – 33.615 –
Ours 0.073 (-96.83%) 27.404 (-18.48%)

Table 4: Summary of clocked times in multiclass experiments grouped by boot-
strap method.
Bootstrap Implem. Train time (s) (%Rel.Red) Test time (s) (%Rel.Red)

None QuaPy 0.638 – 0.010 –

population-based Naive 0.638 – 4.798 –
Ours 0.638 (=) 4.666 (-2.75%)

model-based Naive 318.760 – 4.798 –
Ours 3.742 (-98.83%) 4.509 (-6.03%)

combined Naive 63.752 – 95.962 –
Ours 1.535 (-97.59%) 93.381 (-2.69%)

every bootstrap sample generated in a model-based approach, it undergoes the
total cost associated with training a classifier and an aggregation function, and
that for every bootstrap sample generated in a population-based approach, it
undergoes the total cost of classifying all instances and aggregating them. We
call this implementation “Naive”.

Tables 3 and 4 report the times we have clocked in on a desktop computer
equipped with a 12th Gen Intel(R) i9-12900K processor and 64GB of RAM,
running Ubuntu 22. Recall that, for these experiments, we are resampling 500
times during training with the model-based approach, 500 times during test with
the population-based; for the combined approach we resample 100 times during
training and 100 times during test (thus predicting 100×100=10,000 estimates).
We also display the percentage of relative reduction with respect to the naive
approach.

Overall, these tables clearly show that there are important gains in efficiency
with respect to a naive implementation. These gains are more marked for the
model-based and combined training times. The reason is that training the clas-
sifier is the most time-consuming task, which is carried out once and for all
in our implementation. There are significant reductions also at inference time;
however, these reductions appear less marked than the training ones, since the
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classification of the instances (that our methods undergoes only once) is far less
costly than training a classifier.

5 Conclusions

In this paper, we have proposed a methodology for deriving confidence regions
around class prevalence estimates. This methodology relies on bootstrap, and
is aimed at circumventing the computational complexity this strategy entails.
To do so, we have focused on a specific type of quantification methods called
“aggregative”. These methods carry out the training and inference phases in two
stages, the first of which is considerably slower than the other. We exploit this
characteristic to apply the bootstrap resampling only in the second phase of the
training or inference phases, thus speeding up the otherwise unaffordable cost.

We have empirically evaluated three strategies for applying bootstrap: the
model-based approach, which applies resampling to the training set; the popu-
lation-based approach, which applies resampling to the test set; and a combined
approach that applies bootstrap both to the training and test sets. We have also
investigated three ways for deriving confidence regions, including traditional con-
fidence intervals, confidence ellipses in the simplex, and confidence ellipses in a
transformed space. Our findings suggest that the combined approach paired with
confidence intervals is the most effective method for deriving confidence regions.
Practitioners should consider this approach when computational efficiency is a
priority and when robustness under prior probability shift is required.

By construction, standard bootstrap methods rely on the i.i.d. assumption
and therefore cannot provide valid coverage guarantees under prior probability
shift. In such cases, bootstrap intervals merely quantify the internal variability
of the quantifier on the given sample, while the additional uncertainty induced
by distributional shift is not captured. In the near future, we plan to investigate
other resampling schemes that explicitly incorporate this shift as a promising
direction for achieving more reliable coverage properties.
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A Additional Material

In this section, we report, in disaggregated form, the results summarized in Tables 1 and
2 of the paper “An Efficient Method for Deriving Confidence Intervals in Aggregative
Quantification”.

The notational conventions we used are as follows. For each dataset and each metric,
we highlight in boldface the best results. For the sake of a rapid interpretation of
the results, we highlight, independently for each evaluation metric, the best result in
intense green and the worst result in intense red; the rest of the results are interpolated
between both extremes. All results are confronted against the best one by means of
a Wilcoxon signed-rank test. We use superscripts † and ‡ to indicate the methods
(if any) whose scores are not statistically significantly different from the best one at
different confidence levels: symbol † indicates 0.001 < p < 0.01, while symbol ‡ indicates
p ≥ 0.01. Each table is devoted to one quantification method, and displays the results of
the original quantification method (i.e., one that does not provide confidence regions),
only in terms of MAE, and all combinations of bootstrap methods (population-based,
model-based, and combined) with the tree methods for generating confidence regions
(CI, CE, and CT), in terms of MAE, C, A.

Tables 5a, 5b, and 5c report the results we have obtained for ACC, PACC, and
DM, in the binary datasets, respectively; while Tables 6a, 6b, and 6c report the results
we have obtained for ACC, PACC, and DM, in the multiclass datasets, respectively.
The goodness measures for ACC, PACC, and DM are reported in Tables 7a, 7b, and
7c for the binary datasets, and in Tables 8a, 8b, and 8c for the multiclass case.
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ACC
- Population-based Model-based Combined
- CI CE CT CI CE CT CI CE CT

MAE MAE C A MAE C A MAE C A MAE C A MAE C A MAE C A MAE C A MAE C A MAE C A
balance.1 .028 .023 .82 .08 .024‡ .77 .12 .023 .81 .10 .029 .84 .09 .029 .76 .13 .029 .72 .12 .029 .85 .09 .029 .76 .13 .029 .66 .12
balance.3 .021 .014‡ .95 .08 .014 .91 .11 .014‡ .79 .07 .020 .97 .09 .020 .86 .13 .020 .76 .13 .020 .98 .10 .020 .82 .13 .020 .72 .10

breast-cancer .020 .028 .70 .07 .028 .71 .12 .028 .71 .10 .020 .88 .09 .020‡ .77 .13 .020 .81 .17 .020‡ .91 .09 .020‡ .75 .12 .020‡ .78 .16
cmc.1 .110 .122 .53 .24 .122 .53 .34 .122 .57 .35 .106‡ .80 .30 .106 .65 .37 .106‡ .65 .47 .113 .76 .30 .113 .63 .37 .113 .57 .46
cmc.2 .171 .133‡ .84 .40 .132 .81 .46 .133‡ .63 .52 .158 .91 .54 .158 .72 .49 .158 .70 .67 .167 .88 .53 .167 .74 .52 .167 .58 .57
cmc.3 .187 .243 .37 .36 .243 .33 .43 .243 .45 .42 .168 .85 .54 .168‡ .65 .48 .168 .49 .49 .168‡ .88 .54 .169‡ .65 .49 .168‡ .56 .54

german .080 .082 .66 .20 .083 .59 .29 .082 .58 .30 .077 .83 .28 .078‡ .74 .35 .077 .64 .38 .079 .84 .28 .079 .66 .35 .079 .65 .40
haberman .149 .102‡ .85 .42 .102‡ .76 .47 .102‡ .56 .47 .096‡ 1.00 1.00 .095 .72 .64 .096‡ .59 .59 .111 1.00 1.00 .111 .91 .78 .111 .53 .53
ionosphere .083 .072‡ .16 .10 .072 .21 .14 .072‡ .20 .11 .084 .50 .17 .084 .46 .22 .084 .40 .23 .082 .45 .17 .082 .53 .23 .082 .43 .24

iris.1 .000 .001 1.00 .07 .001 .89 .10 .001 .88 .07 .001 1.00 .07 .001 .89 .10 .001 .88 .07 .000 1.00 .07 .000 .95 .10 .000 .92 .07
iris.2 .064 .049‡ .95 .24 .049 .86 .32 .049‡ .76 .33 .065 1.00 .57 .065 .87 .62 .065 .57 .56 .068 1.00 .54 .068 .96 .61 .068 .55 .53
iris.3 .085 .091 .00 .08 .091 .01 .20 .091 .03 .09 .085‡ .01 .14 .084 .21 .19 .085‡ .34 .22 .087 .05 .15 .087 .19 .20 .087 .29 .19

mammographic .044 .049 .63 .12 .049 .60 .16 .049 .58 .12 .043 .90 .15 .043 .78 .21 .043 .67 .19 .041‡ .91 .15 .041 .81 .21 .041‡ .61 .19
pageblocks.5 .115 .081 .53 .15 .081‡ .51 .23 .081 .47 .15 .112 .85 .26 .112 .54 .37 .112 .58 .27 .114 .76 .24 .114 .54 .35 .114 .54 .25

sonar .126 .104‡ .34 .13 .103 .33 .49 .104‡ .46 .23 .117‡ .53 .27 .117‡ .50 .41 .117‡ .48 .40 .119‡ .54 .28 .119‡ .56 .39 .119‡ .53 .42
spambase .015 .016 1.00 .09 .016 .93 .12 .016 .90 .12 .016 1.00 .09 .016 .90 .13 .016 .78 .14 .016 1.00 .09 .016 .88 .13 .016 .73 .13

spectf .109 .060‡ .81 .21 .060 .66 .28 .060‡ .62 .28 .095 .96 .43 .095 .74 .51 .095 .64 .57 .095 .93 .41 .095 .86 .51 .095 .54 .46
tictactoe .008 .006 1.00 .07 .006‡ .91 .10 .006 .87 .09 .007 1.00 .08 .008 .83 .11 .007 .78 .11 .008 1.00 .08 .008 .88 .11 .008 .77 .10

transfusion .132 .120‡ .86 .48 .120‡ .74 .52 .120‡ .59 .55 .117 1.00 .64 .117 .82 .60 .117 .61 .58 .112 1.00 .70 .112‡ .94 .69 .112 .68 .66
wdbc .018 .017‡ .84 .08 .017 .77 .11 .017‡ .71 .08 .018‡ .87 .08 .018‡ .79 .11 .018‡ .72 .09 .018‡ .86 .08 .018‡ .68 .11 .018‡ .62 .07
wine.1 .006 .019 .80 .07 .019 .79 .13 .019 .69 .06 .006 1.00 .07 .006‡ .93 .10 .006 .83 .11 .007 1.00 .08 .007 .93 .11 .007 .88 .09
wine.2 .019 .011‡ .92 .07 .011 .89 .10 .011‡ .86 .07 .019 1.00 .09 .019 .88 .12 .019 .78 .12 .020 1.00 .09 .020 .88 .13 .020 .81 .14
wine.3 .023 .020‡ .88 .07 .020‡ .84 .11 .020‡ .85 .08 .022 1.00 .10 .022 .87 .14 .022 .74 .14 .020 1.00 .10 .020‡ .91 .14 .020 .77 .15

wine-q-red .042 .032‡ .97 .16 .032 .92 .22 .032‡ .78 .26 .039 .97 .20 .039 .83 .25 .039 .70 .35 .040 .97 .20 .040 .87 .25 .040 .67 .30
wine-q-white .040 .052 .86 .20 .053 .85 .27 .052 .71 .28 .039 .98 .21 .040‡ .80 .28 .039 .75 .36 .040‡ .98 .21 .040‡ .88 .28 .040‡ .73 .33

yeast .158 .130‡ .41 .21 .130 .35 .29 .130‡ .47 .31 .156 .49 .29 .155 .43 .36 .156 .56 .45 .146 .56 .30 .146 .45 .38 .146 .49 .39
Mean .071‡ .065‡ .72 .17 .065 .67 .24 .065‡ .64 .22 .066‡ .85 .26 .066‡ .73 .29 .066‡ .66 .31 .067‡ .85 .26 .067‡ .75 .30 .067‡ .64 .29

(a) Binary experiments for ACC.

PACC
- Population-based Model-based Combined
- CI CE CT CI CE CT CI CE CT

MAE MAE C A MAE C A MAE C A MAE C A MAE C A MAE C A MAE C A MAE C A MAE C A
balance.1 .024 .033 .67 .08 .033 .57 .12 .033 .58 .10 .025 .94 .09 .025 .81 .13 .025 .73 .13 .025 .91 .09 .025 .78 .13 .025 .70 .10
balance.3 .026 .023‡ .90 .08 .022 .76 .11 .023‡ .74 .08 .026 1.00 .09 .025 .84 .13 .026 .74 .11 .028 1.00 .09 .028 .76 .13 .028 .75 .13

breast-cancer .016 .015 .84 .07 .015‡ .74 .11 .015 .77 .11 .016‡ .92 .09 .016‡ .83 .12 .016‡ .73 .14 .016‡ .91 .09 .016‡ .74 .12 .016‡ .71 .11
cmc.1 .075 .079 .70 .20 .079 .57 .29 .079 .61 .27 .074‡ .86 .26 .074 .84 .34 .074‡ .56 .30 .080 .85 .26 .080 .70 .32 .080 .66 .39
cmc.2 .047 .054 .88 .21 .054 .81 .28 .054 .59 .25 .045 .98 .28 .045‡ .81 .36 .045 .67 .39 .045‡ .98 .29 .045‡ .79 .36 .045‡ .65 .40
cmc.3 .125 .104‡ .67 .23 .104 .53 .31 .104‡ .52 .31 .121 .68 .30 .121 .54 .38 .121 .50 .37 .120 .70 .30 .120 .60 .36 .120 .51 .39

german .037 .037‡ .85 .15 .036‡ .71 .21 .037‡ .65 .23 .034 .97 .22 .034‡ .88 .30 .034 .67 .35 .035‡ .98 .22 .034‡ .86 .28 .035‡ .51 .26
haberman .117 .113 .51 .23 .113 .39 .41 .113 .47 .33 .098 .94 .47 .098 .73 .41 .098 .49 .46 .094 .97 .50 .094‡ .84 .44 .094 .44 .44
ionosphere .097 .086‡ .01 .09 .086 .04 .16 .086‡ .10 .09 .097 .18 .16 .097 .25 .21 .097 .29 .19 .098 .13 .16 .098 .28 .21 .098 .26 .19

iris.1 .005 .013 .90 .07 .013 .85 .11 .013 .77 .08 .005‡ 1.00 .07 .005 .85 .10 .005‡ .78 .11 .005 1.00 .07 .005 .79 .10 .005 .80 .09
iris.2 .062 .047‡ .74 .15 .047 .63 .22 .047‡ .58 .21 .054 1.00 .38 .054 .85 .42 .054 .65 .56 .058 1.00 .37 .058 .88 .44 .058 .55 .47
iris.3 .011 .008‡ .98 .08 .008 .88 .11 .008‡ .80 .10 .011‡ 1.00 .13 .011† .84 .17 .011‡ .73 .16 .011‡ 1.00 .13 .011‡ .87 .17 .011‡ .66 .14

mammographic .037 .044 .62 .11 .045 .61 .15 .044 .52 .12 .036 .93 .14 .037 .82 .20 .036 .73 .20 .035‡ .92 .14 .035 .79 .19 .035‡ .66 .17
pageblocks.5 .029 .021 .96 .12 .022‡ .83 .16 .021 .74 .15 .031 1.00 .18 .031 .84 .25 .031 .78 .22 .033 1.00 .18 .033 .85 .24 .033 .66 .19

sonar .164 .095‡ .39 .12 .095 .36 .36 .095‡ .42 .18 .157 .36 .24 .157 .30 .33 .157 .45 .35 .157 .35 .24 .157 .33 .36 .157 .46 .36
spambase .012 .013 .99 .08 .014 .86 .12 .013 .70 .11 .012 1.00 .09 .012 .90 .12 .012 .76 .15 .012 1.00 .09 .012 .91 .12 .012 .73 .12

spectf .085 .070 .54 .15 .070‡ .51 .21 .070 .54 .25 .074 .96 .33 .074 .73 .40 .074 .70 .54 .073 .94 .32 .073 .74 .39 .073 .56 .43
tictactoe .014 .013‡ .94 .08 .013 .79 .12 .013‡ .78 .10 .014‡ .94 .08 .014‡ .76 .12 .014‡ .73 .10 .014† .96 .08 .014† .78 .13 .014† .67 .10

transfusion .061 .065 .71 .18 .065 .62 .27 .065 .53 .26 .058 .99 .28 .058‡ .74 .37 .058 .62 .36 .059 .99 .28 .059 .86 .36 .059 .61 .30
wdbc .017 .013‡ .94 .07 .013 .85 .11 .013‡ .71 .07 .017 .87 .08 .017 .75 .11 .017 .68 .11 .017 .86 .08 .017 .72 .11 .017 .62 .09
wine.1 .005 .015 .81 .07 .015 .73 .13 .015 .75 .08 .004‡ 1.00 .09 .004‡ .89 .12 .004‡ .78 .13 .004‡ 1.00 .09 .004 .86 .13 .004‡ .77 .12
wine.2 .017 .009 .95 .07 .009‡ .80 .11 .009 .77 .08 .017 1.00 .09 .017 .83 .14 .017 .82 .15 .016 1.00 .10 .016 .91 .13 .016 .67 .13
wine.3 .026 .026‡ .81 .07 .026‡ .67 .12 .026‡ .72 .08 .026 .99 .09 .026‡ .84 .13 .026 .71 .12 .026‡ .99 .09 .026‡ .75 .13 .026‡ .73 .13

wine-q-red .030 .032‡ .90 .14 .032‡ .80 .19 .032‡ .68 .22 .029‡ .98 .17 .029 .87 .23 .029‡ .72 .30 .029‡ .98 .18 .029‡ .81 .23 .029‡ .68 .31
wine-q-white .037 .062 .70 .15 .063 .63 .21 .062 .58 .20 .036 .93 .17 .037‡ .84 .23 .036 .61 .21 .037‡ .93 .17 .036‡ .76 .24 .037‡ .62 .21

yeast .128 .131 .07 .16 .131 .06 .25 .131 .19 .19 .128 .33 .21 .128 .31 .29 .128 .35 .26 .122‡ .37 .21 .122 .39 .29 .122‡ .37 .22
Mean .050‡ .047 .73 .12 .047‡ .64 .19 .047 .61 .16 .048‡ .88 .18 .048‡ .75 .23 .048‡ .65 .25 .048‡ .87 .19 .048‡ .74 .24 .048‡ .62 .23

(b) Binary experiments for PACC.

DM
- Population-based Model-based Combined
- CI CE CT CI CE CT CI CE CT

MAE MAE C A MAE C A MAE C A MAE C A MAE C A MAE C A MAE C A MAE C A MAE C A
balance.1 .012 .029 .72 .08 .029 .67 .13 .029 .66 .11 .011‡ .95 .09 .011 .83 .13 .011‡ .75 .11 .011 .95 .09 .011 .77 .12 .011 .74 .12
balance.3 .024 .020‡ .94 .08 .019 .82 .12 .020‡ .69 .08 .024 .95 .08 .024 .73 .13 .024 .74 .08 .025 .93 .08 .025 .76 .12 .025 .69 .07

breast-cancer .018 .015 .96 .07 .015‡ .84 .10 .015 .73 .08 .019 .93 .08 .019 .83 .12 .019 .82 .10 .019 .93 .08 .019 .79 .11 .019 .71 .10
cmc.1 .069 .079 .72 .21 .079 .62 .27 .079 .51 .27 .062‡ .93 .26 .061 .77 .33 .062‡ .65 .39 .067 .92 .25 .067 .77 .33 .067 .62 .31
cmc.2 .053 .053‡ .87 .20 .053 .81 .28 .053‡ .68 .31 .054‡ .96 .27 .054‡ .84 .35 .054‡ .58 .38 .055‡ .97 .28 .055‡ .82 .35 .055‡ .65 .37
cmc.3 .105 .082 .76 .23 .082‡ .65 .30 .082 .58 .34 .099 .78 .30 .098 .59 .36 .099 .51 .38 .098 .79 .31 .098 .63 .37 .098 .46 .36

german .063 .063 .62 .14 .063 .53 .27 .063 .54 .22 .053‡ .88 .23 .052 .66 .30 .053‡ .61 .33 .053‡ .90 .23 .053‡ .65 .29 .053‡ .54 .31
haberman .072 .049 .90 .22 .049‡ .75 .30 .049 .61 .23 .074 1.00 .54 .074 .80 .60 .074 .69 .64 .066 1.00 .51 .066 .88 .62 .066 .47 .42
ionosphere .084 .065‡ .09 .09 .065 .21 .15 .065‡ .22 .10 .075 .53 .16 .075 .61 .22 .075 .49 .22 .074 .55 .16 .074 .54 .21 .074 .45 .20

iris.1 .002 .016 1.00 .07 .016 .91 .10 .016 .85 .07 .002 1.00 .07 .002‡ .93 .10 .002 .84 .08 .003 1.00 .07 .003 .87 .10 .003 .77 .07
iris.2 .034 .051 .62 .12 .051 .57 .21 .051 .60 .18 .038 1.00 .34 .038 .80 .43 .038 .70 .40 .040 1.00 .34 .040 .80 .44 .040 .55 .33
iris.3 .051 .031 .65 .08 .031‡ .64 .13 .031 .59 .08 .042 .99 .13 .042 .81 .18 .042 .74 .14 .042 .98 .12 .042 .79 .17 .042 .64 .13

mammographic .037 .043 .63 .11 .043 .62 .15 .043 .48 .11 .039 .91 .14 .039 .74 .19 .039 .69 .16 .038 .92 .14 .038 .72 .19 .038 .61 .13
pageblocks.5 .048 .042 .71 .10 .042‡ .62 .14 .042 .62 .11 .060 .83 .14 .060 .65 .20 .060 .60 .17 .061 .89 .15 .061 .62 .21 .061 .67 .20

sonar .220 .135 .09 .11 .135‡ .07 .16 .135 .10 .11 .205 .01 .25 .205 .08 .33 .205 .30 .30 .208 .01 .26 .208 .05 .35 .208 .34 .34
spambase .011 .012‡ .99 .08 .012‡ .86 .11 .012‡ .81 .10 .011 .99 .08 .011‡ .83 .12 .011 .78 .10 .011‡ .99 .08 .011‡ .91 .12 .011‡ .77 .10

spectf .090 .208 .01 .13 .208 .04 .28 .208 .09 .15 .121 .97 .37 .121 .77 .47 .121 .65 .49 .126 .93 .36 .126 .74 .44 .126 .69 .49
tictactoe .014 .010 .99 .07 .010‡ .92 .11 .010 .87 .09 .013 .99 .08 .013 .92 .12 .013 .80 .11 .014 .99 .08 .014 .89 .13 .014 .73 .14

transfusion .074 .107 .33 .17 .107 .37 .24 .107 .38 .25 .090 .93 .28 .091 .76 .37 .090 .65 .41 .093 .86 .27 .093 .70 .35 .093 .55 .37
wdbc .012 .017 .89 .07 .017 .78 .11 .017 .67 .07 .012 .92 .08 .012 .81 .12 .012 .72 .09 .012 .92 .08 .012 .81 .11 .012 .72 .07
wine.1 .027 .065 .10 .07 .065 .11 .11 .065 .10 .06 .031 .99 .09 .031 .82 .13 .031 .76 .08 .031 .99 .09 .031 .83 .13 .031 .77 .09
wine.2 .009 .012 .98 .07 .012 .84 .12 .012 .68 .07 .012 .99 .09 .012 .83 .13 .012 .71 .10 .011 .99 .09 .011 .82 .13 .011 .68 .08
wine.3 .006 .006 .99 .07 .006 .87 .11 .006 .83 .09 .005 .99 .08 .005 .90 .11 .005 .77 .11 .004‡ .99 .08 .004 .86 .11 .004‡ .67 .07

wine-q-red .028 .030‡ .92 .14 .030‡ .83 .19 .030‡ .67 .19 .026‡ 1.00 .17 .026 .83 .23 .026‡ .74 .23 .026‡ 1.00 .17 .026‡ .83 .24 .026‡ .70 .25
wine-q-white .037 .056 .74 .16 .057 .62 .22 .056 .59 .22 .038 .94 .17 .039 .83 .23 .038 .64 .22 .038 .94 .17 .038 .80 .23 .038 .60 .19

yeast .075 .070‡ .52 .14 .070‡ .49 .20 .070‡ .42 .15 .069 .72 .18 .069 .66 .25 .069 .57 .24 .066 .77 .18 .066‡ .65 .25 .066 .49 .21
Mean .049 .052‡ .68 .12 .053‡ .62 .18 .052‡ .56 .15 .049‡ .89 .18 .049‡ .76 .24 .049‡ .67 .23 .050‡ .89 .18 .050‡ .74 .24 .050‡ .63 .21

(c) Binary experiments for DM.

Table 5: Binary experiments for ACC, PACC, and DM.



Confidence Intervals in Aggregative Quantification 31

ACC
- Population-based Model-based Combined
- CI CE CT CI CE CT CI CE CT

MAE MAE C A MAE C A MAE C A MAE C A MAE C A MAE C A MAE C A MAE C A MAE C A
hcv .297 .227‡ .34 .45 .227‡ .35 .48 .227‡ .36 .36 .219‡ .69 .83 .218 .70 .85 .219‡ .80 .85 .219‡ .68 .81 .220‡ .66 .78 .219‡ .79 .85

image_seg .006 .008 .67 .00 .008 .82 .00 .008 .85 .01 .006 .92 .00 .006 .92 .02 .006 .98 .01 .006 .90 .00 .006‡ .93 .01 .006 .94 .02
phishing .073 .077 .51 .05 .077 .46 .12 .077 .61 .16 .066 .84 .13 .066‡ .82 .15 .066 .82 .52 .070 .83 .14 .070 .80 .13 .070 .79 .50

page_block .054 .068 .19 .01 .068 .31 .03 .068 .28 .03 .049‡ .77 .03 .049 .85 .06 .049‡ .84 .07 .051 .73 .03 .051 .77 .06 .051 .75 .07
chess .045 .037† .09 .00 .037† .26 .00 .037† .13 .05 .036‡ .19 .00 .036‡ .42 .00 .036‡ .16 .07 .036 .22 .00 .036 .47 .01 .036 .21 .08
mhr .126 .124 .31 .05 .124 .34 .09 .124 .56 .18 .111‡ .60 .11 .111‡ .62 .11 .111‡ .72 .39 .111 .59 .11 .111‡ .59 .10 .111 .76 .41

connect-4 .134 .111‡ .82 .21 .111 .80 .20 .111‡ .83 .71 .116‡ .81 .23 .116‡ .78 .20 .116‡ .80 .67 .117‡ .78 .23 .117‡ .79 .18 .117‡ .79 .66
poker_hand .139 .139 .00 .00 .139 .00 .00 .139 .00 .00 .121‡ .00 .00 .121‡ .41 .43 .121‡ .65 .65 .121 .00 .00 .121 .10 .07 .121 .26 .33
molecular .019 .018‡ .77 .01 .018 .79 .03 .018‡ .77 .04 .019‡ .78 .01 .019‡ .79 .03 .019‡ .82 .03 .019† .76 .01 .019† .77 .02 .019† .80 .04

waveform-v1 .012 .013‡ .97 .01 .012‡ .94 .03 .013‡ .94 .05 .012‡ .99 .01 .012 .94 .03 .012‡ .91 .05 .012‡ 1.00 .01 .012‡ .93 .04 .012‡ .97 .06
isolet .002 .002‡ .66 .00 .002‡ .97 .00 .002‡ .92 .04 .002 .69 .00 .002‡ .96 .02 .002 .97 .04 .002 .73 .00 .002‡ .97 .02 .002 .95 .07
cmc .110 .121† .62 .16 .121† .61 .16 .121† .65 .43 .103 .89 .24 .103‡ .82 .25 .103 .83 .66 .103‡ .88 .24 .103‡ .71 .24 .103‡ .81 .62

shuttle .066 .068 .12 .00 .068 .11 .00 .068 .12 .00 .067 .19 .00 .067 .22 .01 .067 .23 .02 .067 .20 .00 .067 .21 .02 .067 .23 .04
satellite .015 .015‡ .80 .00 .015‡ .87 .01 .015‡ .97 .01 .014‡ .88 .00 .014‡ .94 .01 .014‡ .99 .02 .014 .90 .00 .014‡ .92 .01 .014 .95 .02

hand_digits .004 .004 .96 .00 .004 .98 .01 .004 .99 .00 .004† .97 .00 .004‡ .99 .01 .004† .96 .01 .004‡ .98 .00 .004 .95 .01 .004‡ .98 .02
yeast .158 .130‡ .41 .21 .130 .35 .29 .130‡ .47 .31 .156 .49 .29 .155 .43 .36 .156 .56 .45 .146 .56 .30 .146 .45 .38 .146 .49 .39

nursery .011 .011‡ .95 .00 .010 .92 .01 .011‡ .96 .02 .011‡ .98 .00 .011‡ .97 .01 .011‡ .97 .02 .010‡ .98 .00 .010‡ .95 .01 .010‡ .98 .02
obesity .012 .010‡ .86 .00 .010 .87 .02 .010‡ .91 .02 .011 .94 .00 .011 .91 .01 .011 .97 .02 .011 .95 .00 .011 .91 .02 .011 .97 .01
abalone .097 .081 .05 .01 .081 .05 .04 .081 .07 .08 .068‡ .34 .10 .068† .56 .07 .068‡ .24 .28 .068‡ .39 .11 .068 .60 .07 .068‡ .23 .24
letter .006 .007 .49 .00 .007 .76 .01 .007 .72 .08 .006 .53 .00 .006‡ .79 .02 .006 .75 .08 .006‡ .58 .00 .006‡ .83 .03 .006‡ .80 .11
digits .003 .003‡ .93 .00 .004‡ .98 .01 .003‡ .96 .02 .003† .95 .00 .003† .96 .01 .003† .98 .00 .003 .95 .00 .003‡ .95 .01 .003 .98 .01

academic-success .037 .037‡ .89 .04 .037‡ .90 .08 .037‡ .87 .15 .036 .93 .05 .036‡ .94 .10 .036 .92 .18 .036‡ .94 .05 .036‡ .92 .11 .036‡ .88 .18
wine-quality .171 .166 .01 .00 .166 .01 .00 .166 .00 .00 .147‡ .28 .15 .147‡ .34 .12 .147‡ .70 .56 .146‡ .39 .17 .146 .36 .13 .146‡ .77 .60

dry-bean .005 .005 .97 .00 .005 .92 .00 .005 .98 .01 .005 .97 .00 .005† .97 .01 .005 .96 .00 .005 .97 .00 .005‡ .97 .01 .005 .94 .02
Mean .067 .062† .56 .05 .062† .60 .07 .062† .62 .12 .058‡ .69 .09 .058‡ .75 .12 .058‡ .77 .23 .058 .70 .09 .058‡ .73 .10 .058 .75 .22

(a) Multiclass experiments for ACC.

PACC
- Population-based Model-based Combined
- CI CE CT CI CE CT CI CE CT

MAE MAE C A MAE C A MAE C A MAE C A MAE C A MAE C A MAE C A MAE C A MAE C A
hcv .305 .274 .14 .17 .273 .14 .19 .274 .23 .30 .235 .52 .66 .236‡ .49 .67 .235 .72 .78 .237‡ .51 .65 .237‡ .50 .66 .237‡ .73 .77

image_seg .006 .007 .83 .00 .007 .88 .01 .007 .90 .00 .005‡ .95 .00 .006 .96 .01 .005‡ .95 .01 .005‡ .96 .00 .005 .93 .01 .005‡ .94 .01
phishing .035 .037 .71 .02 .037 .68 .06 .037 .82 .09 .033 .92 .05 .033† .89 .09 .033 .92 .24 .032 .91 .05 .032 .87 .10 .032 .84 .23

page_block .042 .042 .40 .01 .042 .56 .03 .042 .46 .04 .039‡ .82 .02 .039 .80 .04 .039‡ .81 .06 .042 .69 .02 .042 .69 .04 .042 .80 .04
chess .041 .034‡ .18 .00 .034 .38 .01 .034‡ .21 .07 .034‡ .22 .00 .034‡ .38 .01 .034‡ .23 .08 .034‡ .22 .00 .034‡ .38 .01 .034‡ .25 .07
mhr .056 .043 .79 .05 .043‡ .76 .07 .043 .85 .17 .051 .86 .08 .052 .86 .10 .051 .85 .32 .049 .90 .08 .049 .77 .09 .049 .86 .33

connect-4 .033 .032‡ .88 .04 .032 .89 .08 .032‡ .94 .13 .032‡ .88 .04 .032‡ .88 .08 .032‡ .98 .15 .032‡ .90 .04 .032‡ .86 .09 .032‡ .88 .14
poker_hand .098 .099 .00 .00 .099 .00 .00 .099 .14 .14 .091‡ .12 .10 .091 .09 .09 .091‡ .85 .86 .091‡ .10 .09 .091‡ .08 .08 .091‡ .83 .86
molecular .017 .017‡ .77 .01 .017 .78 .02 .017‡ .79 .03 .017‡ .80 .01 .017‡ .85 .02 .017‡ .81 .03 .018† .80 .01 .018† .74 .02 .018† .77 .04

waveform-v1 .010 .010† .99 .01 .010‡ .95 .02 .010† .91 .04 .010‡ .98 .01 .010 .93 .03 .010‡ .94 .04 .010‡ .98 .01 .010‡ .93 .03 .010‡ .94 .05
isolet .002 .002‡ .66 .00 .002‡ .97 .01 .002‡ .96 .04 .002 .68 .00 .002† .97 .01 .002 .98 .06 .002 .71 .00 .002 .98 .03 .002 .97 .03
cmc .103 .146 .06 .05 .146 .13 .13 .146 .27 .19 .099 .53 .11 .099 .59 .15 .099 .73 .41 .097‡ .56 .11 .097 .64 .16 .097‡ .72 .41

shuttle .049 .061 .33 .00 .061 .43 .01 .061 .57 .02 .043 .97 .02 .043‡ .94 .04 .043 .97 .18 .043 .97 .02 .043 .93 .03 .043 .94 .20
satellite .010 .011 .92 .00 .011† .92 .01 .011 .94 .01 .010‡ .94 .00 .010‡ .93 .01 .010‡ .98 .01 .010 .95 .00 .010‡ .92 .01 .010 .97 .02

hand_digits .003 .004 .95 .00 .004 .96 .00 .004 .97 .00 .003‡ .97 .00 .003† .96 .00 .003‡ .99 .02 .003‡ .97 .00 .003 .93 .01 .003‡ .97 .02
yeast .128 .131 .07 .16 .131 .06 .25 .131 .19 .19 .128 .33 .21 .128 .31 .29 .128 .35 .26 .122‡ .37 .21 .122 .39 .29 .122‡ .37 .22

nursery .010 .008‡ .98 .00 .008 .97 .01 .008‡ .94 .02 .010 .96 .00 .010 .97 .01 .010 .94 .02 .010 .97 .00 .010 .91 .02 .010 .90 .02
obesity .015 .013‡ .60 .00 .013 .73 .03 .013‡ .81 .02 .015† .66 .00 .015 .78 .02 .015† .86 .00 .015 .66 .00 .015 .81 .03 .015 .82 .02
abalone .079 .072 .14 .01 .072 .16 .01 .072 .18 .14 .057 .55 .07 .057‡ .59 .05 .057 .52 .40 .057‡ .51 .07 .057‡ .58 .05 .057‡ .49 .37
letter .005 .006 .49 .00 .006 .77 .02 .006 .72 .07 .005‡ .55 .00 .005 .81 .01 .005‡ .86 .07 .005‡ .56 .00 .005‡ .88 .03 .005‡ .86 .06
digits .003 .003 .91 .00 .003 .94 .01 .003 .96 .01 .003 .93 .00 .003 .94 .02 .003 .97 .02 .003 .93 .00 .003 .95 .01 .003 .93 .02

academic-success .035 .038 .69 .02 .038 .73 .06 .038 .80 .10 .034 .88 .03 .034 .84 .06 .034 .89 .11 .032 .89 .03 .032‡ .83 .07 .032 .90 .14
wine-quality .123 .106‡ .27 .02 .106‡ .35 .03 .106‡ .34 .16 .106 .43 .06 .106 .51 .06 .106 .59 .43 .104‡ .46 .07 .104 .51 .07 .104‡ .58 .42

dry-bean .004 .005† .98 .00 .005‡ .96 .00 .005† .95 .02 .005‡ .98 .00 .005‡ .94 .02 .005‡ .95 .01 .004 .98 .00 .004‡ .89 .01 .004 .93 .02
Mean .051 .050† .57 .02 .050‡ .63 .04 .050† .66 .08 .045‡ .73 .06 .045‡ .76 .08 .045‡ .82 .19 .044‡ .73 .06 .044 .75 .08 .044‡ .80 .19

(b) Multiclass experiments for PACC.

DM
- Population-based Model-based Combined
- CI CE CT CI CE CT CI CE CT

MAE MAE C A MAE C A MAE C A MAE C A MAE C A MAE C A MAE C A MAE C A MAE C A
hcv .223 .202 .17 .17 .202 .20 .23 .202 .48 .51 .183‡ .68 .75 .183‡ .75 .79 .183‡ .89 .91 .182 .62 .72 .182‡ .72 .76 .182 .85 .86

image_seg .011 .013 .39 .00 .013 .77 .00 .013 .82 .02 .011 .84 .00 .011 .96 .00 .011 .95 .02 .011‡ .89 .00 .011 .97 .00 .011‡ .97 .03
phishing .050 .075 .29 .02 .075 .35 .05 .075 .42 .04 .064 .56 .04 .064 .64 .09 .064 .66 .11 .063 .58 .04 .063 .62 .09 .063 .68 .11

page_block .038 .057 .16 .01 .057 .22 .02 .057 .31 .02 .043 .56 .02 .043 .69 .04 .043 .69 .05 .045 .46 .02 .045 .54 .04 .045 .62 .06
chess .038 .033 .19 .00 .033 .34 .00 .033 .24 .08 .031 .40 .00 .031‡ .58 .00 .031 .41 .14 .031‡ .43 .00 .031‡ .64 .00 .031‡ .46 .19
mhr .060 .041‡ .85 .04 .041 .81 .08 .041‡ .87 .14 .056 .84 .07 .056 .90 .11 .056 .90 .24 .055 .83 .06 .055 .81 .11 .055 .91 .24

connect-4 .033 .032‡ .95 .04 .031 .93 .07 .032‡ .96 .13 .032‡ .94 .04 .032‡ .94 .08 .032‡ .93 .14 .032‡ .94 .04 .032‡ .89 .08 .032‡ .93 .14
poker_hand .118 .118 .05 .01 .118 .00 .00 .118 .03 .02 .099‡ .35 .32 .099‡ .49 .52 .099‡ .89 .92 .099‡ .34 .33 .099 .46 .47 .099‡ .87 .94
molecular .018 .016‡ .83 .01 .016 .82 .02 .016‡ .81 .02 .019 .81 .01 .019 .85 .02 .019 .83 .03 .019 .82 .01 .019 .84 .02 .019 .81 .03

waveform-v1 .009 .010‡ .98 .01 .010‡ .93 .02 .010‡ .94 .03 .009‡ .98 .01 .009‡ .94 .02 .009‡ .95 .04 .009‡ .98 .01 .009 .91 .03 .009‡ .97 .04
isolet .004 .004† .78 .00 .004 .98 .01 .004† .93 .03 .004‡ .82 .00 .004‡ 1.00 .02 .004‡ .98 .07 .004 .83 .00 .004‡ 1.00 .00 .004 .98 .07
cmc .080 .121 .12 .06 .120 .22 .12 .121 .30 .20 .068‡ .87 .12 .068 .86 .17 .068‡ .90 .41 .068‡ .89 .12 .068‡ .90 .18 .068‡ .86 .43

shuttle .040 .050 .52 .01 .050 .69 .01 .050 .66 .04 .050 .83 .01 .050 .93 .02 .050 .80 .12 .050 .81 .01 .050 .89 .02 .050 .79 .12
satellite .011 .011 .87 .00 .011 .90 .00 .011 .90 .02 .011† .91 .00 .011‡ .93 .02 .011† .95 .01 .011 .90 .00 .011‡ .91 .01 .011 .95 .01

hand_digits .005 .005 .93 .00 .005 .95 .01 .005 .95 .01 .005 .93 .00 .005 .96 .02 .005 .96 .01 .005 .95 .00 .005 .93 .01 .005 .94 .03
yeast .075 .070‡ .52 .14 .070‡ .49 .20 .070‡ .42 .15 .069 .72 .18 .069 .66 .25 .069 .57 .24 .066 .77 .18 .066‡ .65 .25 .066 .49 .21

nursery .007 .009 .96 .00 .009 .94 .01 .009 .95 .02 .009 .99 .00 .009 .96 .01 .009 .96 .02 .009 .99 .00 .009 .95 .01 .009 .97 .02
obesity .015 .015† .51 .00 .015‡ .72 .01 .015† .83 .02 .014‡ .78 .00 .014 .86 .01 .014‡ .96 .01 .014‡ .77 .00 .014‡ .79 .01 .014‡ .95 .04
abalone .079 .067 .08 .01 .067 .12 .02 .067 .14 .09 .055‡ .75 .13 .054 .82 .07 .055‡ .78 .60 .055‡ .71 .13 .055‡ .82 .07 .055‡ .73 .56
letter .007 .007 .17 .00 .007 .32 .00 .007 .36 .06 .007 .23 .00 .007‡ .37 .03 .007 .39 .04 .007‡ .23 .00 .007‡ .45 .03 .007‡ .42 .08
digits .005 .005‡ .93 .00 .005‡ .87 .02 .005‡ .95 .01 .004‡ .93 .00 .005 .97 .01 .004‡ .95 .02 .004 .93 .00 .004‡ .95 .02 .004 .91 .03

academic-success .026 .025† .87 .02 .025† .87 .08 .025† .84 .08 .024 .92 .03 .024 .92 .06 .024 .92 .10 .023‡ .95 .03 .023 .89 .07 .023‡ .89 .09
wine-quality .141 .134 .11 .02 .134 .11 .03 .134 .33 .21 .124 .40 .09 .124‡ .39 .06 .124 .72 .57 .125‡ .36 .09 .125‡ .36 .05 .125‡ .69 .53

dry-bean .005 .005 .95 .00 .005 .95 .01 .005 .93 .01 .005 .97 .00 .005 .93 .01 .005 .97 .01 .005 .97 .00 .005 .94 .01 .005 .93 .01
Mean .046‡ .047† .55 .02 .047† .60 .04 .047† .64 .08 .042‡ .75 .08 .042‡ .80 .10 .042‡ .83 .20 .041‡ .75 .08 .041 .78 .10 .041‡ .82 .20

(c) Multiclass experiments for DM.

Table 6: Multiclass experiments for ACC, PACC, and DM.
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Population-based Model-based Combined
CI CE CT CI CE CT CI CE CT

balance.1 2.127 1.763 1.979† 2.050 1.643 1.586 2.097 1.647 1.477
balance.3 2.516 2.140 2.013 2.432 1.900 1.695 2.434 1.781 1.670

breast-cancer 1.836‡ 1.668 1.716‡ 2.159‡ 1.658 1.689 2.262 1.628 1.618
cmc.1 0.840‡ 0.702 0.642 1.201 0.862 0.649 1.113‡ 0.850 0.506
cmc.2 1.093 0.997† 0.552 1.021 0.847 0.571 0.990 0.849 0.426
cmc.3 0.444 0.386 0.495 0.980‡ 0.740‡ 0.346 1.023 0.754‡ 0.427

german 1.120‡ 0.924† 0.756 1.250‡ 1.006 0.712 1.259 0.907 0.770
haberman 1.050 0.947 0.469 0.693 0.551 0.409 0.693 0.714 0.367
ionosphere 0.392 0.461 0.406 0.959 0.803† 0.573 0.868‡ 0.910‡ 0.593

iris.1 2.818 2.232 2.420 2.818 2.232 2.420 2.814‡ 2.384 2.497
iris.2 1.580 1.266 1.011 1.040 0.888 0.399 1.073 1.006 0.393
iris.3 0.000 0.021 0.037 0.023 0.369‡ 0.438 0.116† 0.305‡ 0.410‡

mammographic 1.413‡ 1.168 1.267‡ 1.813‡ 1.351 1.195 1.840 1.414 1.078
pageblocks.5 1.196‡ 0.994 0.957 1.486 0.879 0.888 1.376† 0.880 0.901

sonar 0.566‡ 0.459‡ 0.597‡ 0.683‡ 0.673 0.549 0.694 0.655 0.453
spambase 2.548 2.102 2.102 2.505 1.997 1.714 2.496 1.966 1.594

spectf 1.398 1.019 0.799 1.268 0.923 0.509 1.251 1.105 0.454
tictactoe 2.750 2.235 2.255 2.660 1.993 1.868 2.637 2.079 1.892

transfusion 1.010 0.861‡ 0.445 1.023 0.851† 0.465 0.952 0.915 0.497
wdbc 2.204 1.780 1.812‡ 2.224 1.770 1.755 2.203‡ 1.526 1.551
wine.1 2.148‡ 1.864 1.837 2.736 2.264 2.082 2.719‡ 2.255 2.263
wine.2 2.516 2.162 2.294‡ 2.591 1.976 1.831 2.573‡ 1.969 1.871
wine.3 2.349 1.981 2.216 2.473‡ 1.925 1.581 2.479 1.969 1.664

wine-q-red 1.947 1.632 1.280 1.785 1.410 0.916 1.782 1.457 0.942
wine-q-white 1.547‡ 1.362 1.054 1.729‡ 1.233 0.998 1.734 1.368 1.006

yeast 0.715‡ 0.540† 0.732‡ 0.750‡ 0.581 0.524 0.862 0.670 0.452
Average 1.543‡ 1.295 1.236 1.629 1.282 1.091 1.629‡ 1.306 1.068

(a) Goodness results for binary experiments using ACC.

Population-based Model-based Combined
CI CE CT CI CE CT CI CE CT

balance.1 1.710‡ 1.281 1.364 2.305 1.733 1.592 2.221‡ 1.682 1.596
balance.3 2.373 1.776 1.823‡ 2.484‡ 1.825 1.654 2.503 1.648 1.653

breast-cancer 2.217 1.702 1.811‡ 2.315 1.799 1.575 2.283‡ 1.634 1.604
cmc.1 1.293† 0.896 0.858 1.395 1.215 0.706 1.381‡ 1.023 0.746
cmc.2 1.542 1.253 0.842 1.537 1.143 0.751 1.509 1.112 0.701
cmc.3 1.129 0.777 0.623 0.968 0.701 0.460 0.992 0.795 0.486

german 1.708 1.279‡ 1.029 1.693‡ 1.372 0.835 1.729 1.388 0.641
haberman 0.698 0.452 0.459 1.187 0.957‡ 0.389 1.224 1.129‡ 0.331
ionosphere 0.023 0.080 0.323‡ 0.385‡ 0.462 0.383‡ 0.297‡ 0.433‡ 0.330‡

iris.1 2.449‡ 2.024 1.999 2.753 2.077 1.905 2.749‡ 1.966 2.019
iris.2 1.472 1.102 0.921 1.357‡ 1.128† 0.527 1.378‡ 1.220‡ 0.479
iris.3 2.603 2.074 1.964 2.201 1.628 1.431 2.211 1.682 1.324

mammographic 1.434‡ 1.226 1.139 1.952 1.497 1.334 1.937‡ 1.445 1.255
pageblocks.5 2.235 1.703 1.527 1.994 1.504 1.433 1.997 1.494 1.200

sonar 0.796 0.629 0.666‡ 0.490 0.365 0.466† 0.481 0.387 0.430†

spambase 2.552 1.963 1.608 2.540 2.036 1.651 2.537 2.072 1.620
spectf 1.035† 0.889 0.789 1.444 1.002 0.626 1.438 1.038 0.506

tictactoe 2.483 1.842 1.935 2.410 1.748 1.735 2.469 1.790 1.583
transfusion 1.310‡ 1.015† 0.738 1.541‡ 1.078 0.701 1.549 1.224 0.762

wdbc 2.506 2.001 1.824 2.219 1.696 1.574 2.199 1.625 1.465
wine.1 2.102† 1.689 1.872‡ 2.552 2.032 1.779 2.520 1.940 1.762
wine.2 2.563 1.897 1.936 2.517 1.808 1.808 2.496 2.034 1.431
wine.3 2.158† 1.585 1.785‡ 2.510 1.866 1.581 2.501‡ 1.626 1.657

wine-q-red 1.891 1.495 1.132 1.896 1.532 1.052 1.877 1.411 0.939
wine-q-white 1.435‡ 1.144 1.026 1.805‡ 1.423 0.989 1.812 1.285 0.985

yeast 0.136 0.101 0.281 0.568‡ 0.454 0.418‡ 0.634 0.569† 0.471‡

Average 1.687‡ 1.303 1.241 1.808 1.388 1.129 1.805‡ 1.371 1.076

(b) Goodness results for binary experiments using PACC.

Population-based Model-based Combined
CI CE CT CI CE CT CI CE CT

balance.1 1.865‡ 1.541 1.591† 2.390‡ 1.844 1.710 2.399 1.678 1.671
balance.3 2.510 1.924 1.721 2.465 1.663 1.816 2.405 1.726 1.706

breast-cancer 2.627 2.063 1.867 2.424 1.869 1.981 2.387 1.810 1.686
cmc.1 1.282‡ 0.954 0.631 1.543 1.199 0.739 1.539‡ 1.182 0.784
cmc.2 1.558 1.302 0.992 1.524 1.207 0.596 1.536 1.191 0.759
cmc.3 1.314 1.075 0.669 1.172 0.796 0.492 1.172 0.863 0.402

german 1.165‡ 0.842 0.819 1.494‡ 1.017 0.783 1.540 0.993 0.623
haberman 1.556 1.130 0.927 1.075 0.808 0.511 1.104 0.909 0.358
ionosphere 0.219 0.450 0.454 1.049‡ 1.120 0.762† 1.107‡ 0.993‡ 0.686†

iris.1 2.811 2.289 2.296 2.762 2.293 2.169 2.748 2.121 1.988
iris.2 1.329‡ 1.024† 1.059 1.410‡ 0.983 0.797 1.415 0.994 0.600
iris.3 1.718‡ 1.486 1.492 2.224 1.611 1.491 2.216‡ 1.612 1.311

mammographic 1.447‡ 1.242 1.040 1.922‡ 1.344 1.298 1.942 1.304 1.181
pageblocks.5 1.769‡ 1.355 1.402‡ 1.780 1.237 1.129 1.867 1.155 1.215

sonar 0.287‡ 0.158‡ 0.227‡ 0.016 0.094† 0.305 0.016 0.056 0.289‡

spambase 2.603 1.996 1.997 2.565 1.906 1.852 2.560 2.085 1.821
spectf 0.017 0.071 0.093 1.356 1.048 0.589 1.323† 0.994 0.659

tictactoe 2.684 2.208 2.219 2.586 2.154 1.890 2.577 2.061 1.664
transfusion 0.675 0.677 0.504 1.460 1.072 0.681 1.399 1.043 0.587

wdbc 2.386 1.831 1.748 2.379 1.860 1.734 2.376 1.840 1.786
wine.1 0.333 0.321 0.282 2.500 1.819 1.842 2.494‡ 1.817 1.836
wine.2 2.690 2.055 1.747 2.516 1.814 1.654 2.492 1.800 1.616
wine.3 2.741 2.109 2.106 2.647 2.114 1.843 2.651 2.033 1.648

wine-q-red 1.966 1.575 1.186 1.982 1.452 1.195 1.952 1.437 1.078
wine-q-white 1.491‡ 1.064 0.951 1.843‡ 1.439 1.021 1.849 1.389 1.006

yeast 1.130‡ 0.929 0.771 1.382‡ 1.128 0.859 1.475 1.117 0.761
Average 1.622‡ 1.295 1.184 1.864‡ 1.419 1.221 1.867 1.392 1.143

(c) Goodness results for binary experiments using DM.

Table 7: Goodness results for binary experiments using ACC, PACC, and DM
in terms of Log-Ratio Goodness (LRG).
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Population-based Model-based Combined
CI CE CT CI CE CT CI CE CT

hcv 0.332 0.323 0.292 0.523† 0.527† 0.574 0.524‡ 0.501‡ 0.571†

image_seg 10.378 9.596 9.843 14.200 10.099 10.219 13.318‡ 9.981 8.156
phishing 1.555‡ 1.245 1.114 2.012 1.951‡ 0.950 1.989‡ 1.925‡ 0.949

page_block 0.893 1.128 1.028 2.911 2.598 2.419 2.796‡ 2.319 2.152
chess 0.777 2.163† 0.485 1.361 3.321‡ 0.571 1.553 3.648 0.676
mhr 0.883 0.947† 1.017 1.364† 1.461 0.946† 1.338 1.385‡ 0.960

connect-4 1.401 1.523‡ 0.701 1.346 1.487‡ 0.733 1.305 1.554 0.716
poker_hand 0.000 0.000 0.000 0.000 0.490‡ 0.608 0.000 0.271 0.364‡

molecular 3.605 3.001 2.930 3.593 2.947 3.152 3.466 2.897 2.946
waveform-v1 4.407 3.512 3.359 4.401‡ 3.406 3.054 4.416 3.355 3.208

isolet 10.638† 12.750 10.137† 11.121‡ 12.487‡ 11.713‡ 11.766‡ 10.986† 10.089†

cmc 1.198‡ 1.178‡ 0.730 1.533 1.332 0.764 1.483 1.119 0.811
shuttle 0.839‡ 0.721‡ 0.680† 1.204‡ 1.170‡ 1.011‡ 1.258 1.064‡ 0.953‡

satellite 8.635‡ 7.180 6.292 8.963‡ 7.638 5.850 9.372 7.167 5.259
hand_digits 15.473‡ 13.883 13.865 15.635‡ 12.882 13.450 15.796 11.787 12.641

yeast 0.715‡ 0.540† 0.732‡ 0.750‡ 0.581 0.524 0.862 0.670 0.452
nursery 6.235† 4.973 4.796 6.339 5.017 4.836 6.287‡ 4.890 4.724
obesity 13.160‡ 9.604 7.371 13.675 10.479 6.941 13.450‡ 8.479 6.363
abalone 0.186 0.104 0.054 0.856 1.712‡ 0.191 0.999 1.848 0.205
letter 7.898† 10.001‡ 5.925 8.543‡ 10.393 6.227 9.348‡ 9.944‡ 6.055
digits 14.990‡ 13.035 13.723‡ 15.312 13.103 13.952‡ 15.312 11.625 12.532

academic-success 2.869 2.518 1.876 2.852 2.447 1.901 2.866 2.368 1.809
wine-quality 0.069 0.074 0.000 0.579‡ 0.746‡ 0.690‡ 0.767 0.764‡ 0.749‡

dry-bean 15.220 10.253 10.183 15.013‡ 10.792 10.605 15.075‡ 10.749 8.558
Average 5.098 4.594† 4.047 5.587‡ 4.961‡ 4.245 5.639 4.637‡ 3.829

(a) Goodness results for multiclass experiments using ACC.

Population-based Model-based Combined
CI CE CT CI CE CT CI CE CT

hcv 0.170 0.149 0.183 0.434‡ 0.412‡ 0.518‡ 0.428‡ 0.428‡ 0.522
image_seg 12.887† 10.099 10.465 14.753 11.370 9.164 14.499‡ 9.835 9.121
phishing 2.633‡ 2.087† 2.112 2.814 2.394 1.725 2.795‡ 2.279 1.528

page_block 1.896 2.105 1.686 3.372 2.687 2.496 2.905‡ 2.394 2.676
chess 1.648 3.335 0.571 1.893 3.085‡ 0.697 1.870 3.250‡ 0.845
mhr 2.491 2.189 1.700 2.281 2.162 1.296 2.419 1.911 1.274

connect-4 2.977 2.458 2.140 2.928‡ 2.418 2.137 2.984 2.298 1.936
poker_hand 0.000 0.000 0.215 0.279 0.230 0.634 0.232 0.227 0.610‡

molecular 3.629 2.987 3.088 3.750 3.226 3.156 3.710‡ 2.847 2.956
waveform-v1 4.617 3.672 3.341 4.438 3.456 3.442 4.398 3.423 3.207

isolet 10.638† 13.062 11.172† 10.960† 12.473‡ 11.055‡ 11.444† 10.927† 9.799
cmc 0.146 0.266 0.401 1.301† 1.214‡ 0.926† 1.358 1.348‡ 0.861†

shuttle 2.003 2.219 2.389 4.387 3.908 2.360 4.362‡ 3.832 2.084
satellite 11.742 8.340 6.448 11.430‡ 8.562 6.520 11.405‡ 7.471 5.853

hand_digits 15.312‡ 13.652 13.696† 15.635 13.335 13.608† 15.635 11.934 12.252
yeast 0.136 0.101 0.281 0.568‡ 0.454 0.418‡ 0.634 0.569† 0.471‡

nursery 6.652 5.346 4.795 6.448† 5.302 4.737 6.509‡ 4.802 4.525
obesity 8.897‡ 7.651‡ 6.462 9.519‡ 8.496‡ 6.202 9.556 7.408† 5.835
abalone 0.532 0.709 0.179 1.741 2.179 0.533 1.550 2.092‡ 0.560
letter 7.898 9.737‡ 6.591 8.865† 10.622‡ 7.162 9.026† 10.927 6.988
digits 14.667‡ 12.600 13.519‡ 14.990 12.801† 13.002† 14.990 11.093 12.190

academic-success 2.618‡ 2.225 2.026 3.245‡ 2.525 2.258 3.248 2.485 2.153
wine-quality 1.003† 1.335‡ 0.586 1.191 1.555 0.620 1.232 1.459‡ 0.645

dry-bean 15.381‡ 11.433 10.507 15.443 10.450 10.729 15.305‡ 9.536 9.055
Average 5.441 4.907† 4.356 5.944 5.222‡ 4.391 5.937‡ 4.782† 4.081

(b) Goodness results for multiclass experiments using PACC.

Population-based Model-based Combined
CI CE CT CI CE CT CI CE CT

hcv 0.269 0.270 0.413† 0.553‡ 0.592‡ 0.623 0.521‡ 0.577‡ 0.602‡

image_seg 5.789 8.620 6.977 12.047‡ 11.290‡ 6.720 12.176 11.175‡ 6.328
phishing 1.207† 1.246 1.312 2.010† 1.880† 1.590† 2.094 1.818 1.651†

page_block 0.794 0.872 1.239 2.428‡ 2.430 2.305‡ 2.070‡ 1.924‡ 2.059‡

chess 1.459 2.533 0.608 2.884 4.716‡ 0.915 2.890 5.059 1.017
mhr 2.783 2.286 1.907 2.412 2.289 1.599 2.368 2.063 1.575

connect-4 3.258 2.618 2.253 3.173 2.674 2.046 3.158 2.478 2.030
poker_hand 0.209 0.000 0.081 0.496‡ 0.528† 0.636 0.473‡ 0.527 0.615‡

molecular 3.955 3.204 3.284 3.839 3.233 3.310 3.843 3.248 3.149
waveform-v1 4.607 3.640 3.691 4.531 3.585 3.464 4.500 3.451 3.534

isolet 12.572 14.429‡ 10.281 13.217 14.628‡ 9.229 13.378 15.647 8.036
cmc 0.336 0.506 0.446 2.011‡ 1.776 1.175 2.039 1.828 1.069

shuttle 2.707† 3.388‡ 2.376 3.920‡ 4.226 2.027 3.922‡ 4.042‡ 1.928
satellite 11.398 7.900 6.295 11.298‡ 7.606 6.186 10.745‡ 7.825 6.034

hand_digits 14.990‡ 12.887 11.921 14.990‡ 12.745 11.212 15.312 11.964 10.099
yeast 1.130‡ 0.929 0.771 1.382‡ 1.128 0.859 1.475 1.117 0.761

nursery 6.370‡ 5.077 4.709 6.585‡ 5.247 4.581 6.630 5.152 4.600
obesity 7.177 7.373 5.901 10.495 8.746‡ 5.909 10.475‡ 7.937 5.718
abalone 0.484 0.658 0.342 1.800 2.586‡ 0.826 1.661 2.641 0.790
letter 2.740 4.770‡ 3.128† 3.707 5.271 3.687‡ 3.707 4.804‡ 2.895†

digits 14.990 11.491 11.114 14.990 13.771‡ 9.554 14.990 12.914† 8.142
academic-success 3.318 2.626 2.301 3.394 2.817 2.407 3.435 2.641 2.300

wine-quality 0.394 0.376 0.482 1.062‡ 1.140 0.702† 0.963 1.117‡ 0.710†

dry-bean 14.822‡ 10.276 10.484 15.075 10.881 9.579 14.730‡ 9.984 8.756
Average 4.907 4.499 3.846 5.762 5.241‡ 3.798 5.731‡ 5.080‡ 3.517

(c) Goodness results for multiclass experiments using DM.

Table 8: Goodness results for multiclass ACC, PACC, and DM in terms of Log-
Ratio Goodness (LRG).
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Abstract. The machine learning task of quantification aims to estimate
the proportion of classes in an unlabeled dataset. This task is made diffi-
cult by label shift, where the class distribution of the target data differs
from the training data. While many methods focus on precise prevalence
estimation, a common practical goal is simply to detect whether a class’s
prevalence has shifted from a nominal value. This study systematically
compares four methods for detecting such deviation of class prevalence
in binary classification tasks: a one-sample t-test, a one-sample KS-test,
an Expectation-Maximization Likelihood Ratio Test (EM LRT), and a
bootstrapped confidence interval approach (EM Bootstrap CI). Using
an Artificial Prevalence Protocol – a procedure for varying prevalence
in sampled test sets – on two real-world and one simulated dataset, we
evaluated the methods based on their calibration and discriminatory
power. Our findings indicate that calibration of the underlying classifier
is critical for the EM-based methods to achieve a target 5% false posi-
tive rate (FPR). The EM LRT, when paired with a calibrated classifier,
consistently maintained an FPR near the target and had the highest dis-
criminatory power as measured by the area under the receiver operating
characteristic curve. In contrast, the t-test proved to be robust to cali-
bration status of the underlying classifier, though it had discriminatory
power lower than the EM LRT and EM Bootstrap CI. This empirical
evaluation provides practical guidance on the performance characteris-
tics of different unlabeled class prevalence hypothesis tests, highlighting
the EM LRT discriminatory power and the importance of calibration for
likelihood-based approaches.

Keywords: Hypothesis Testing · Quantification · Detection.

1 Introduction

The machine learning field of quantification, also known as class prevalence esti-
mation or learning to quantify, focuses on accurately estimating the proportion
of each class within a given unlabeled dataset. While precise point estimates of
class prevalence are often the direct goal of quantification, there are numerous
practical scenarios where a slightly different objective comes to the forefront:
detecting whether a class’s prevalence differs significantly from a predefined,
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nominal value. For instance, in public health, a health authority might not need
to know the exact percentage of a population affected by a certain disease, but
rather whether its prevalence has crossed an epidemic threshold [13]. Similarly,
in quality control, a manufacturer might simply need to know if the defect rate
in a batch of products has changed from a historical norm. We refer to this task
of detecting changes in class prevalence as unlabeled class prevalence hypothesis
testing.

In this paper, we investigate unlabeled class prevalence hypothesis testing as
a one-sample, two-tailed hypothesis testing problem. We systematically compare
methods for detecting when the prevalence of a binary class significantly deviates
from a nominal value in simulated and benchmark datasets.

2 Background

The background section is split into two subsections. First, we will discuss prior
work in dataset shift detection. Second, we introduce the task of quantification,
including likelihood ratio testing methods for label shift detection and methods
for constructing confidence intervals.

2.1 Dataset Shift Detection in Machine Learning

Dataset shift detection is a very similar task to unlabeled prevalence hypothesis
testing. Dataset shift detection seeks to identify if a test set is sampled from a
different distribution from the train dataset. Dataset shift between train and test
sets can cause machine learning model performance to degrade and has there-
fore become a focus of machine learning researchers. Machine learning models
can be designed to be robust to dataset shift, or dataset shift can be detected
and models retrained. Rabanser et al evaluate several methods for detecting
various types of dataset shift between train and test sets [20]. Rabanser took
a two stage approach. First, the dimensionality of the train and test sets were
reduced, then statistical tests comparing the two sets were applied. Several types
of dataset shift were evaluated, including label shift, where prevalence of classes
shifts between training and test sets. They found that Black Box Shift Detec-
tion [17] paired with a two-sample Kolmogorov-Smirnoff test (KS-test) performs
consistently well at detecting various types of dataset shift, including label shift.

Unlabeled class prevalence hypothesis testing and label shift detection are
related, but different tasks. Label shift detection seeks to detect if training and
testing sets were sampled from populations with different class prevalence, while
unlabeled class prevalence hypothesis testing detects if the prevalence in an
unlabeled set deviates from a specific, nominal value.

2.2 Quantification

The goal of quantification is to estimate the prevalence of different classes in
an unlabeled dataset, rather than predicting the class of individual samples.
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Work on quantification has a long history in several fields, including epidemi-
ology where researchers have long sought to estimate the prevalence of diseases
given imperfect assays [14]. One of the key motivations behind quantification is
to improve the accuracy of a classification model [9]. In these cases, classifier
predictions are treated as posterior probabilities with respect to covariates and,
therefore, a function of class priors. When a prior probability change - known
as label shift - is detected, these posterior probabilities are adjusted to reflect
the newly estimated prior. A common way to estimate a prior is to determine
the prior probability that maximizes the likelihood of observing the unlabeled
dataset (eq 1), where X is a sequence of unlabeled data (often the output of a
classifier), and ωi represents class i.

Likelihood (X) =
∏

P (xi)

=

N∏
i=1

P (xi|ω0)P (ω0) + P (xi|ω1)P (ω1)
(1)

An expectation maximization (EM) algorithm to maximize likelihood with
respect to prior probabilities was formalized by Saerens [21] (eq 2).

p̂(0)(ωi) = p̂t(ωi)

p̂(s)(ωi|xk) =

p̂(s)(ωi)
p̂t(ωi)

p̂t(ωi|xk)

p̂(s)(ω0)
p̂t(ω0)

p̂t(ω0|xk) +
p̂(s)(ω1)
p̂t(ω1)

p̂t(ω1|xk)

p̂(s+1)(ωi) =
1

N

N∑
k=1

p̂(s)(ωi|xk) (2)

where p̂(s)(ωi) is the prior estimate at the sth iteration of the expectation
maximization algorithm, p̂(s)(ωi|xk) are the classifier outputs adjusted for the
new prior estimate, and pt denotes that under the training set. Expectation
maximization is an algorithm which maximizes the likelihood of observing our
dataset [8]. Though several methods for point estimates of binary class prevalence
have since emerged [6], the EM approach has been shown to be difficult to beat,
particularly when the underlying classifier is well calibrated [3, 10,11].

Likelihood Ratio Tests for Detecting Label Shift Saerens et al. suggest
using a likelihood ratio test to detect label shift [21]. They note that two times
the log likelihood ratio of the unlabeled data under the true prevalence vs the
maximum likelihood prevalence is distributed according to a chi-squared distri-
bution. Label shift is then detected if the cumulative density function of the
chi-squared distribution evaluated at two times the log likelihood ratio exceeds
one minus the specified false positive rate (i.e., 0.05).
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Confidence Interval Methods A fairly straightforward approach to unlabeled
class prevalence hypothesis testing is to estimate confidence intervals around
class prevalence estimates. The null hypothesis is then rejected when the prior
associated with the null hypothesis falls outside of the confidence intervals. Con-
fidence intervals are often constructed in quantification using standard boot-
strapping techniques [16,22]. Daughton and Paul developed the Error-Adjusted
Bootstrap method to account for the errors associated with imperfect classi-
fiers [7]. Tasche evaluated the coverage and confidence interval width for confi-
dence intervals generated by bootstrapping several quantification methods [22].
Tasche found that the underlying classifier performance greatly impacted the
confidence interval coverage and width.

3 Experiments

In this section, we describe the experimental protocols, datasets, and detection
methods used.

3.1 Experimental Protocol

We run our experiments in an Artificial Prevalence Protocol (APP) [9] in the
presence of label shift. An APP creates a variety of prevalences in the test set
through random sub-sampling. We assumed that the class-conditional densities
of classifier outputs are stationary between the train and the test set. We first
split our training and testing datasets with a 50%-50% train-test stratified split.
We train our classifiers on the entire training set. We construct our testing set
by first selecting the number of positive instances to sample from a binomial
distribution with positive class probability set to our artificially selected preva-
lence. To determine how performance scales, we use a test sample size of of 50,
75, and 100. We then sample, without replacement, the corresponding number
of positive and negative samples from the test dataset.

We construct artificial prevalences under which the null hypotheses are true,
and under which the true prevalence is 10% higher than that of the null hypoth-
esis. We consider 3 null hypotheses: prevalence equal to 25%, 50%, and 75%.
We calculate false positive rates (FPR) as the percent of simulations generated
according to the null hypothesis that resulted in rejecting the null hypothesis.
Similarly, we calculate true positive rates (TPR) as the percent of simulations
generated with prevalence 10% higher than the null hypothesis that resulted in
rejecting the null hypothesis. We simulate each scenario 2000 times to get stable
estimates of performance. A summary of our experimental protocol can be found
in Table 1.

3.2 Metrics

We measure the calibration and discriminatory power of each hypothesis test. A
well-calibrated test has a false positive rate consistent with the significance level
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of the test. In our experiment, we report the false positive rate when each test
is evaluated at a significance level of 0.05, so tests with false positive rates close
to 5% should be considered calibrated. We report discriminatory power of each
test as the area under the curve of the receiver operating characteristic (AUC).

3.3 Datasets

We use three datasets in our experiments, including the Wisconsin Breast Cancer
dataset [1], the Pima Indians Diabetes dataset [2], and a simulated dataset. All
three datasets have binary classification targets. Datasets were chosen to have
a breadth of input feature space. The Wisconsin Breast Cancer dataset has 30
features, the Pima Indians Diabetes dataset has eight features, and the simulated
dataset has a single feature. The simulated dataset was generated by sampling
a single feature from normal distributions (σ = 1) with zero mean for negative
classes, and 0.85 mean for positive classes.

3.4 Detection Methods

Logistic regression classifiers are trained. We evaluate performance with and
without calibration. We calibrate our regression model using Platt’s method [19],
which fits a logistic regression model of our classifier outputs to the labels across
cross-validation folds. Our classifier outputs are then fed into four detection
methods: t-test, KS-test, expectation maximization likelihood ratio tests, and
bootstrapped confidence intervals around expectation maximization estimates.

T-Test T-tests are commonly used to detect differences in population parame-
ters. We perform a two-sided, one-sample t-test, comparing the mean classifier
probability output on the unlabeled test set to the expected value under the null
hypothesis (population prevalence equals p0). The expected value is computed
according to eq 3.

E[X] = E[X|ω1]p0 + E[X|ω0](1− p0) (3)

KS-test Rabanser demonstrated that a two-sample KS-test applied to the out-
put of a classifier can detect label shift from train to test distribution [20].
One-sample KS-tests can be used to test if a univariate sample comes from
a specified known distribution by comparing the empirical cumulative density
function (CDF) of the sample to the CDF of the known distribution. In this
application, the sample of classifier outputs are compared to a mixture CDF of
the class conditional distributions under the null hypothesis, defined by eq 4.

PH0(X ≤ x) = P (X ≤ x|ω1)p0 + P (X ≤ x|ω0)(1− p0) (4)
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Expectation Maximization Likelihood Ratio Test We implement the ex-
pectation maximization (EM) algorithm proposed by Saerens et al., [21] initial-
izing the iterative algorithm according to our null hypothesis such that p̂(0) = p0.
Saerens proposes a log likelihood ratio comparing the likelihood of the maximum
likelihood prior p̂(s)(ωi) to the prior in the training dataset p̂t(ωi). We modify
the likelihood ratio to compare any prior p0 to the maximum likelihood estimate
by adjusting p̂0(ωi|xk) from classifier outputs p̂t(ωi|xk) according to eq 5.

p̂0(ωi|xk) =

p̂0(ωi)
p̂t(ωi)

p̂t(ωi|xk)

p̂0(ω0)
p̂t(ω0)

p̂t(ω0|xk) +
p̂0(ω1)
p̂t(ω1)

p̂t(ω1|xk)
(5)

The χ2 statistic is then calculated according to eq 6.

2log

∏N
k=1

p̂(s)(ωi)
p̂(s)(ωi|xk)∏N

k=1
p̂0(ωi)

p̂0(ωi|xk)

(6)

We then evaluate the χ2 test with 1 degree of freedom. We refer to this test
as the Expectation Maximization Likelihood Ratio Test (EM LRT).

Bootstrapped Confidence Intervals Finally, we create bootstrapped con-
fidence intervals. We resample classifier outputs of the unlabeled test set with
replacement, then run Saerens’ expectation maximization algorithm to calculate
our bootstrap prevalence estimate. The 2.5th and 97.5th quantiles of the boot-
strapped prevalence estimates are taken as the confidence interval. If p0 falls
outside of the confidence interval, we reject the null hypothesis. We refer to this
method as the EM Bootstrap CI.

Table 1. Experimental Design Summary

Parameter Value(s)

Null Hypothesis Prevalence (p0) 25%, 50%, 75%
Test Sample Sizes 50, 75, 100
Number of Simulations 2000
Tests EM LRT, EM Bootstrap CI, t-test, KS-test
Metrics AUC, FPR

4 Results

This section presents the results of the experiments comparing different hy-
pothesis testing methods across various datasets and calibration settings. We
first present the classification performance and training set prevalence on the
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datasets to provide context for the hypothesis testing results. We then report
the AUC and FPR by dataset, test sample size, calibration, and unlabled preva-
lence hypothesis testing method.

Table 2. Classification performance and training set class prevalence

Dataset AUC Train Prevalence Train Set Size (N)

Diabetes 0.827 34.8% 385
Cancer 0.993 37.2% 285
Simulated 0.726 50.0% 1000

Table 2 demonstrates that the underlying classifier has a breadth of per-
formance across datasets. Note that, despite evaluating both a calibrated and
uncalibrated logistic regression models, we only report a single AUC. This is
because Platt’s calibration method does not change the AUC of the underlying
classifier. The Breast Cancer Wisconsin (Cancer) dataset can be almost perfectly
classified using a logistic regression model. Classifier performance was worse for
the Pima Indians Diabetes (Diabetes) dataset, and worse still for the simulated
dataset. Prevalence of the positive class was similar in the two real-world datasets
( 35%), while the simulated dataset had a balanced training set. There is a range
of training set sizes across the datasets, with the simulated dataset being over
three times the size of the Diabetes dataset.

Table 3. Area under the receiver operating curve and false positive rate for the Pima
Indian Diabetes dataset. Top performing methods are in bold.

AUC False Positive Rate

Cali-
bration

test-
size

EM
LRT

Bootstrap
CI t-test KS

-test
EM
LRT

Bootstrap
CI t-test KS

-test

Platt’s
50 0.6034 0.6019 0.5830 0.5770 6.25% 7.38% 6.48% 8.45%
75 0.6368 0.6351 0.6105 0.6039 7.63% 8.28% 7.83% 10.73%
100 0.6623 0.6604 0.6359 0.6195 7.75% 8.48% 8.23% 11.63%

None
50 0.6283 0.6238 0.5869 0.5756 9.00% 11.55% 6.43% 8.50%
75 0.6577 0.6528 0.6143 0.5997 11.23% 12.90% 7.70% 11.25%
100 0.6847 0.6790 0.6410 0.6152 13.65% 14.93% 8.07% 12.28%

Table 3 displays the AUC and FPR for the Pima Indian Diabetes dataset.
This dataset had a moderate number of samples (385 in the training set), and the
underlying classifier performance was moderate (AUC: 0.827). For this dataset,
EM LRT was the most skilled (AUC: 0.6034 - 0.6847), followed by the EM
Bootstrap CI (AUC: 0.6019 - 0.6790) across different test sizes. The t-test was
marginally inferior (AUC: 0.5830 - 0.6410), and the KS-test was substantially
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Fig. 1. Receiver operating characteristic curves show that across all tests, skill improves
as sample size increases and performance of the underlying classifier improves.
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worse (0.5770 - 0.6152). Notably, the FPRs for the EM LRT, EM Bootstrap
CI, and t-test with calibration were close to or slightly above the target 5%,
ranging from 6.25% to 8.48%, while the KS-test was poorly calibrated. Without
calibration, EM LRT and EM Bootstrap CI achieved much higher FPRs (9.00%
- 14.93%).

Table 4. Area under the receiver operating characteristic curve and false positive rate
for the Breast Cancer Wisconsin dataset. Top performing methods are in bold.

AUC False Positive Rate

Cali-
bration

test-
size

EM
LRT

Bootstrap
CI t-test KS

-test
EM
LRT

Bootstrap
CI t-test KS

-test

Platt’s
50 0.7525 0.7491 0.7387 0.6781 5.20% 6.07% 5.67% 8.47%
75 0.8193 0.8165 0.8036 0.7314 5.17% 6.08% 5.30% 10.90%
100 0.8667 0.8633 0.8527 0.7727 5.65% 6.43% 5.88% 13.20%

None
50 0.7555 0.7462 0.7284 0.6795 7.23% 9.28% 5.78% 8.33%
75 0.8129 0.8040 0.7899 0.7316 7.95% 9.80% 5.67% 10.85%
100 0.8478 0.8382 0.8411 0.7751 9.65% 11.23% 6.47% 13.00%

Table 4 shows the AUC and FPR for the Breast Cancer Wisconsin dataset.
This dataset had a moderate number of samples (285 in the training set), and the
underlying classifier performance was nearly perfect (AUC: 0.993). The EM LRT
method achieved the highest AUC across all evaluated conditions, indicating
superior discriminatory power. This superiority was maintained regardless of
test size or the application of Platt’s calibration. As the test size increased from
50 to 100, the AUC for all methods showed a corresponding improvement. For
example, with Platt’s calibration, the AUC for the EM LRT increased from
0.7525 to 0.8667. Analysis of the false positive rates (FPR) revealed that the
optimal method was dependent on the calibration strategy. When Platt’s scaling
was applied, the EM LRT method consistently produced the lowest FPR, with
rates as low as 5.17%. In contrast, without calibration, the t-test yielded the
lowest FPR, maintaining a rate between 5.67% and 6.47%. In all scenarios, the
KS-test exhibited the highest FPR.

Table 5 presents the AUC and FPR for the simulated dataset. This dataset
had a large number of samples (1000 in the training set) and the underlying
classifier performance was poor (AUC: 0.726). In contrast to the other datasets,
no single method consistently achieved the highest AUC. Top performing meth-
ods in terms of discriminatory power varied with test size. For example, under
Platt’s calibration, the t-test was marginally superior at a test size of 50 (AUC
= 0.5460), while the EM LRT and EM Bootstrap CI methods performed best
at test sizes of 75 (AUC = 0.5651) and 100 (AUC = 0.5781), respectively. A
consistent trend across all methods was the modest improvement in AUC with
increasing test size. The KS-test consistently yielded the lowest AUC values.
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Table 5. Area under the receiver operating characteristic curve and false positive rate
for the simulated dataset. Top performing methods are in bold.

AUC False Positive Rate

Cali-
bration

test-
size

EM
LRT

Bootstrap
CI t-test KS

-test
EM
LRT

Bootstrap
CI t-test KS

-test

Platt’s
50 0.5445 0.5446 0.5460 0.5390 5.70% 7.13% 5.95% 6.18%
75 0.5651 0.5648 0.5622 0.5484 5.95% 6.62% 5.87% 6.75%
100 0.5779 0.5781 0.5753 0.5628 6.38% 6.92% 6.52% 7.45%

None
50 0.5449 0.5439 0.5457 0.5388 5.20% 8.08% 5.95% 6.37%
75 0.5636 0.5625 0.5627 0.5487 6.07% 7.50% 6.02% 7.07%
100 0.5742 0.5730 0.5744 0.5619 7.23% 8.20% 6.45% 7.58%

The control of the FPR was also variable. Without calibration, the EM LRT
was most effective at the smallest test size (FPR = 5.20%), whereas the t-test
was most effective at larger test sizes. With Platt’s scaling, no single method
consistently produced the lowest FPR. Overall, on the simulated dataset, the
EM LRT, Bootstrap CI, and t-test methods yielded comparable results, with
the optimal choice for both AUC and FPR being contingent on the specific test
size.

5 Discussion

When using the outputs of a well calibrated logistic regression model, the EM
LRT method most consistently yielded a false positive rate close to the specified
5%, though it was consistently above 5%. The EM Bootstrap CI method con-
sistently resulted in a false positive rate higher than the specified 5%. This is in
disagreement with Tasche’s findings, which generally found that bootstrapping
the EM estimate had adequate coverage [22]. This disagreement might arise from
the fact that we are evaluating the confidence interval at a larger width (95%)
than Tasche (90%), leading to less stable estimates. Additionally, Tasche only
simulated 100 runs compared to our 2000, and it’s possible that the minor FPR
excess (no more than 3% among calibrated models) did not appear in Tasche’s
study due to stochasticity.

Calibration proved to be important in achieving false positive rate close to
the expected value for the methods involving EM, particularly among the real-
world datasets with smaller sample sizes. This is in line with Esuli et al., who
found performance of point estimates of prevalence using the EM algorithm were
highly sensitive to calibration of underlying classifiers [10]. The t-test method
performance was robust to calibration status, performing nearly identically when
applied to the calibrated vs uncalibrated model outputs. In applications where
reliable calibration of the underlying classifier is not tenable, a t-test could be
utilized.



44 D. Kaftan et al

The EM LRT demonstrated the greatest skill in terms of area under the
receiver operating characteristic curve across the two benchmark datasets and
all sample sizes. Detection skill was correlated with the skill of the underlying
classifier, and the sample size, consistent with previous work [18,22]. While the
EM LRT performed the best in our experiments, it can only be utilized in two-
sided hypothesis testing. For one-sided hypothesis testing, the EM Bootstrap CI
could be employed as it performed similarly to EM LRT.

There are several limitations to this study. Use of an artificial prevalence
protocol may create unreasonable and highly unlikely prevalences that do not
reflect reality [12]. Additionally, we have not considered types of dataset shift
outside of prior shift. Covariate shift and concept shift would likely affect our
results, as González et al. found the EM algorithm to degrade in performance
in the presence of these shifts [15]. Finally, our analysis was limited to binary
classes and neglected more complex topics in quantification including multiclass
quantification (for example, see [4]) or ordinal quantification (for example see
[5]).

6 Conclusion

This paper systematically compared various methods for unlabeled class preva-
lence hypothesis testing in binary classification tasks using both real-world and
simulated datasets. The findings highlight the importance of calibration, partic-
ularly for EM based methods, in achieving false positive rates that align with the
desired 5% target. EM LRT generally provided the greatest discriminative power
with the best calibration. While the EM LRT consistently produced false positive
rates close to 5% with a well-calibrated logistic regression model, the EM Boot-
strap Confidence Interval (EM Bootstrap CI) method often resulted in higher
FPRs, possibly due to the wider confidence interval evaluated and increased
simulation runs compared to prior work. The t-test, in contrast, demonstrated
robust performance independent of calibration status. This empirical evaluation
provides valuable insights into the performance characteristics of different prior
shift detection techniques, contributing to the limited existing literature on this
crucial task.
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Abstract. Recalibration of binary probabilistic classifiers to a target
prior probability is an important task in areas like credit risk manage-
ment. We analyse methods for recalibration from a distribution shift
perspective. Distribution shift assumptions linked to the area under the
curve (AUC) of a probabilistic classifier are found to be useful for the
design of meaningful recalibration methods. Two new methods called
parametric covariate shift with posterior drift (CSPD) and ROC-based
quasi moment matching (QMM) are proposed and tested together with
some other methods in an example setting. The outcomes of the test
suggest that the QMM methods discussed in the paper can provide ap-
propriately conservative results in evaluations with concave functions like
for instance risk weights functions for credit risk.

Keywords: Probabilistic classifier · posterior probability · prior proba-
bility · calibration · distribution shift · dataset shift · credit risk.

1 Introduction

Occasionally binary probabilistic classifiers are learned on a training dataset and
then are applied to a test dataset which reflects a joint distribution of features
and labels different than the distribution of the training dataset. Actually, quite
often it is unknown how much the training and test distributions differ because
for the instances in the test dataset only the features but not the labels can be
observed. Hence, the feature training and test distributions might be different
while the posterior probabilities are identical for the training and test datasets.
This kind of dataset shift is called covariate shift and is rather benign in principle
as it would not require any change of the probabilistic classifier (Storkey [21]).
If however, another type of dataset shift other than covariate shift is incurred,
applying the classifier learned on the training dataset to the instances in the
test dataset without any changes risks to generate unreliable predictions of the
labels.

In this paper, we study the situation where indeed no labels are observed in
the test dataset but where there exists an estimate of the proportion of positive
labels, i.e. an estimate of the test prior probability of the positive class. The
problem is then to recalibrate the probabilistic classifier learned on the training
dataset such that the mean of the recalibrated classifier on the test dataset
matches the estimate of the positive labels proportion.

This is a common situation in credit risk management, see for instance Chap-
ter 4 of Bohn and Stein [3]. So called probabilities of default (PDs) are estimated
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on a training sample with observations of solvent and defaulted borrowers and
must be recalibrated before being evaluated for the borrowers in a live portfo-
lio. The future solvency states of these borrowers in general are unknown but
typically an estimate of the proportion of borrowers who are going to default
is available. Sometimes, such estimates are conservative, i.e. they are likely to
significantly overestimate the proportion of defaulters. Conservatism of the es-
timates can be a regulatory requirement or it could be part of stress testing
exercises intended to assess the impact of unfavourable economic circumstances
on the portfolio.

Recalibration of posterior probabilities learned on a training dataset to a
target prior probability on a test dataset is not a well-defined problem because
there is more than one way to transform the original posterior probabilities such
that the target is matched. Therefore, we are going to study the impact of the
recalibration method on the values of concave or nearly concave functions of the
posterior probabilities as an additional criterion to identify meaningful solutions.
The risk weight functions for the calculation of minimum required capital under
the “internal ratings based (IRB) approach” of the Basel credit risk framework
(BCBS [2]) are a primary example of such functions. The findings of this paper
can inform the choice of the recalibration method in credit risk management and
similar contexts.

This paper is organised as follows: Section 2 puts the paper into the con-
text of related work. Section 3 describes the technical details of the setting of
the paper and the recalibration problem. In addition, it introduces the evalua-
tion of the solutions with a concave function as a criterion for assessing their
appropriateness. Section 4 presents a number of methods for recalibration. Para-
metric CSPD (Section 4.4) and ROC-based QMM (Section 4.5) seem to be new.
With an example in Section 5, we illustrate the dependence of the solutions to
the recalibration problem on assumptions of distribution shift and identify some
less reliable recalibration methods. Section 6 proposes a way forward to prudent
recalibration and concludes the paper. Appendix A provides additional techni-
cal details needed for the implementation of some of the methods discussed in
Section 4.

2 Related work

Calibration of probabilistic classifiers has often been treated in the literature,
see the surveys by Ojeda et al. [14] and Silva Filho et al. [20]. In the typical
calibration setting, a real-valued score is learned on a training dataset with joint
observations of instances and labels. The score is then calibrated or mapped to
become a probabilistic classifier on a test (or validation or calibration) dataset
for which there are also joint observations of instances and labels. If the original
score is already a probabilistic classifier then the term recalibration is sometimes
used instead of calibration.

Cautious calibration (Allikivi et al. [1]) is a variant of binary calibration
with the goal to avoid either overconfidence or underconfidence of probabilistic
classifiers. Like for calibration, it is assumed that the labels of the instances in the
calibration and test datasets are known. A common feature with recalibration
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as defined in this paper is conservatism of the posterior estimates. In the setting
of this paper, conservatism can be achieved by choosing an appropriate value for
the target class-1 prior probability.

Recalibration of probabilities of default (PDs) on a dataset without obser-
vation of labels but with knowledge of the prior probability of positive labels
has been a topic of research for twenty or more years in credit risk (Bohn and
Stein [3] and the references therein). Such recalibration may be considered an
extreme case of learning with label proportions (Quadrianto et al. [16]) where
there are no individual label observations but label proportions for groups of
instances are available. In general, ‘learning with label proportions’ in the bi-
nary case requires that there are at least two groups of instances with different
proportions of positive labels such that results from the related research are not
applicable to the recalibration problem as studied in this paper.

Quantification (or class distribution estimation, CDE) is another related
problem. See Esuli et al. [8] for a recent survey. The goal of CDE in the binary
case is to estimate the proportion of positive labels in a test dataset without any
information on the labels. The primary common feature of the CDE and recal-
ibration problems is the dependence of the solutions upon assumptions on the
type of distribution shift between the training and test datasets. However, Re-
mark 1 in Section 4.4 shows that the one-parameter version of the recalibration
method ‘parametric CSPD’ may also be used for CDE.

Covariate shift with posterior drift (CSPD) as introduced by Scott [19] turns
out to be a useful assumption on the type of distribution shift for tackling the
recalibration problem. See Sections 4.4 and 5 below.

3 Setting

In this paper, we consider binary, i.e. two-class classification problems for which
we assume the following setting:

– There are a class variable Y with values in Y = {0, 1} and a features (also
called covariates) vector X with values in X . Each example (or instance) to
be classified has a class label Y and features X.

– In the training dataset, for all examples their features X and labels Y are
observed. P denotes the training joint distribution, also called source distri-
bution, of (X,Y ) from which the training dataset has been sampled.

– In the test dataset, only the features X of an example can immediately
be observed. Its label Y becomes known only with delay or not at all. Q
denotes the test joint distribution, also called target distribution, of (X,Y )
from which the test dataset has been sampled.

– For the sake of a more concise notation, we write for short p = P [Y = 1]
and q = Q[Y = 1] and assume 0 < p < 1 and 0 < q < 1.

We also use the notation EP [Z] =
∫
Z dP and EQ[Z] =

∫
Z dQ for integrable

real-valued random variables Z.
The setting described above is called dataset shift (Storkey [21]) or distribu-

tion shift (Lipton et al. [12]) if source and target distribution of (X,Y ) are not
the same, i.e. in case of P (X,Y ) ̸= Q(X,Y ).
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3.1 Recalibration

We assume that since the joint source distribution P (X,Y ) of features X ∈ X
and class Y ∈ {0, 1} = Y is given, also the posterior probability ηP (X) =
P [Y = 1 |X] is known or can be estimated from the training dataset. ηP (X) is
a special case of probabilistic classifiers η which are real-valued statistics with
0 ≤ η ≤ 1 and typically intended to approximate ηP (X). Probabilistic classifiers
for their part are special cases of scores (or scoring classifiers) which are real-
valued statistics intended to provide a ranking of the instances in the dataset in
the sense that a high score suggests a high likelihood that the instance has class
label 1 (positive label).

By assumption only the target marginal feature distribution Q(X) is observed
while the target joint distribution Q(X,Y ) is unknown. Nonetheless, for the
recalibration problem, we also assume the target marginal label distribution,
specified by q = Q[Y = 1] to be known. This is not in contradiction to Q(X,Y )
being unknown because in general the ensemble of marginal distributions does
not uniquely determine the joint distribution. We will encounter an example for
this phenomenon in Section 5 below.

The goal is to fit a posterior probability ηQ(x) = Q[Y = 1 |X = x] as some
transformation T of ηP (x) such that in particular it holds that

q = EQ[ηQ(X)] = EQ

[
T (ηP (X))

)
]. (1a)

In the following, we call this problem recalibration of the posterior probability
ηP (X) to a new prior probability q of class 1 under the target distribution.

Note that the assumption

ηQ(X) = T
(
ηP (X)

)
(1b)

appears quite natural but actually is rather strong. Indeed, by Theorems 32.5
and 32.6 of Devroye et al. [7], (1b) is equivalent to ηP (X) being sufficient for
X with respect to Y under Q, i.e. Q[Y = 1 |X] = Q[Y = 1 | ηP (X)]. This
sufficiency property may be interpreted as ‘the information provided by ηP (X)
about Y is as good as the information by the whole set of features X under the
target distribution Q’.

3.2 Non-uniqueness of recalibration

The recalibration problem is not well-posed in the sense that its solution is not
unique. Therefore, we study it in a context where underestimating EQ

[
C(ηQ(X))

]
for some fixed concave function C : [0, 1] → R ought to be avoided. In general,
it holds that (by Jensen’s inequality and Lemma 1.2 of Lalley [11])

(1− q)C(0) + q C(1) ≤ EQ

[
C(Z)

]
≤ C(q) (2)

for any random variable 0 ≤ Z ≤ 1 with EQ[Z] = q, and Z = ηQ(X) in
particular. The maximum value C(q) is taken for constant Z = q, the minimum
value (1− q)C(0) + q C(1) is realised for Z with Q[Z = 1] = q = 1−Q[Z = 0].
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However, assuming a distribution shift between source P and target Q which
results in a constant posterior probability ηQ(x) = q appears too restrictive in
most real world environments. In Section 5 below, we demonstrate that assuming
preservation of classification performance as measured by AUC (Area Under
the Curve, see next section) between source P and target Q strikes a sensible
note between too restrictive and too tolerant assumptions for the estimation of
EQ

[
C(ηQ(X))

]
under the target features distribution.

3.3 Area Under the Curve (AUC)

AUC (Area Under the Curve1) is a popular measure of performance of a binary
classifier, i.e. AUC is considered an appropriate measure of the classifier’s abil-
ity to predict the true class label of an instance. See Chen et al. [5] for related
comments. Since AUC plays an important role in some of the recalibration meth-
ods discussed in the following sections, we present here the population-level (in
contrast to sample-based) representations of AUC that are used in this paper.

Let S = h(X) be a score which is a function of the features with values in
an ordered set S. Define the class-conditional distributions Py, y ∈ Y = {0, 1},
of S by Py[S ∈ M ] = P [S ∈ M |Y = y], for all measurable M ⊂ S.

If the score S is assumed to be large for instances with high likelihood to
have class 1 and small for instances with high likelihood to have class 0, then
the AUC for S is defined as

AUCS = P ∗[S1 > S0] +
1

2
P ∗[S1 = S0], (3a)

where P ∗ denotes the product measure of P1 and P0, and S1 and S0 are the
coordinate projections of the space S × S on which P ∗ is defined. As a conse-
quence, S1 and S0 are independent and P ∗[Sy ≤ s] = Py[S ≤ s] for y ∈ {0, 1}
and all s ∈ S.

By Definition (3a), on the one hand AUCS is “equivalent to the probability
that the classifier will rank a randomly chosen positive instance higher than a
randomly chosen negative instance” (p. 868 of Fawcett [9]) if both of the class-
conditional distribution functions of the score S are continuous. On the other
hand, it holds that AUCS = 1

2 for any uninformative score S – i.e. in the case
P0 = P1 – even if both of the class-conditional score distribution functions have
discontinuities. Note that computing AUCS by means of (3a) at first glance
requires knowledge of the joint distribution P (S, Y ) of S and Y which would
have to be inferred from a sample of paired (S, Y ) observations.

However, AUCS can also be determined if the distribution P (S) of S and
the posterior probabilities ηP (S) = P [Y = 1 |S] are known. Then with p =

1 ‘Curve’ refers to ROC (Receiver Operating Characteristic). See Fawcett [9] and the
references therein for the most common definitions of ROC and AUC.
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EP [ηP (S)] it holds that2

P1[S ∈ M ] =
EP

[
ηP (S)1M (S)

]
p

and

P0[S ∈ M ] =
EP

[
(1− ηP (S))1M (S)

]
1− p

(3b)

for all measurable sets M ⊂ S. Plug P0 and P1 from (3b) in (3a) to compute
AUCS .

To indicate the way AUCS is computed, in this paper we refer simply to AUC
if AUCS is assumed to be computed or inferred by means of (3a) irrespectively
of the origin of P0 and P1. We refer to implied AUC if AUCS is assumed to be
computed by means of (3b) in combination with (3a). See Appendix A.1 for a
more detailed formula for implied AUC in the case of a discrete-valued score S.

4 Approaches to recalibration

Any solution as in (1b) to the recalibration problem together with the marginal
feature distribution Q(X) completely determines the target distribution Q(X,Y ).
Since Q(X,Y ) ̸= P (X,Y ) in case q ̸= p, any given solution specifies some dis-
tribution shift between the source and target distributions. Hence, in order to
better understand the consequences of selecting a particular solution transfor-
mation T , it is natural to explore the solution approaches through the lens of
distribution shift. In the following, we assume 0 < ηP (x) < 1 for all x ∈ X .

4.1 Recalibration under assumption of stretched or compressed
covariate shift

At first glance recalibration of ηP (X) to a fixed target prior probability q might
appear to be straightforward: Just define ηQ(x) = q

EQ[ηP (X)] ηP (x) for x ∈ X ,
then EQ[ηQ(X)] = q immediately follows. This approach is called scaling (Sec-
tion 3.1 of Ptak-Chmielewska and Kopciuszewski [15]).

Unfortunately, in some cases there is a problem with this approach: 1 < ηQ(x)
may be incurred in the case q > EQ[ηP (X)]. To avoid this issue, one can modify
the approach to become

ηQ(x) = min
(
t ηP (x), 1

)
, (4a)

with t > 0 being determined by

q = EQ

[
min

(
t ηP (x), 1

)]
. (4b)

(4a) could be called capped scaling of the source posterior probabilities. Obvi-
ously, (4a) implies that (1b) is satisfied with T (η) = min(t η, 1).

Recall that source distribution P (X,Y ) and target distribution Q(X,Y ) are
related through covariate shift (in the sense of Storkey [21]) if it holds that
2 The indicator function 1A is defined by 1A(a) = 1 if a ∈ A and 1A(a) = 0 if a /∈ A.
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P [Y = y |X] = Q[Y = y |X] for all y ∈ Y with probability 1 both under P and
Q. Hence if t > 1 in (4a), one might call the implied distribution shift stretched
covariate shift.

In case t < 1 the induced distribution shift could be considered compressed
covariate shift. In case q > EQ[ηP (X)], (4a) and (4b) imply t > 1 and ηQ(x) = 1
for all x with t ηP (x) ≥ 1. This may have the consequence of an unjustified
increase of AUCηQ(X) compared to AUCηP (X) for the area under the curve
AUC defined as in Section 3.3 below.

4.2 Recalibration under assumption of label shift

Source distribution P (X,Y ) and target distribution Q(X,Y ) are related through
label shift (Lipton et al. [12]), previously called prior probability shift in the
literature (Storkey [21]), if P [X ∈ M |Y = y] = Q[X ∈ M |Y = y] for all
measurable sets M ⊂ X and y ∈ Y.

Under the assumption of label shift, the target feature distribution Q(X) can
be represented as

Q[X ∈ M ] = q P [X ∈ M |Y = 1] + (1− q)P [X ∈ M |Y = 0], (5)

for all measurable sets M ⊂ X . If a prior probability q = Q[Y = 1] is given, then
according to the posterior correction formula (Eq. (2.4) of Saerens et al. [18]),
ηQ is determined through (recall p = P [Y = 1])

ηQ(x) =

q
p ηP (x)

q
p ηP (x) +

1−q
1−p (1− ηP (x))

, (6)

for all x ∈ X with probability 1 under Q. In the credit risk community, the use
of (6) for recalibration is popular (Section “Calibrating to PDs” of Bohn and
Stein [3], Section 3.1 of Ptak-Chmielewska and Kopciuszewski [15]) because it
avoids the problem of ηQ(X) potentially taking the value 1 for large ηP (X) which
may be encountered with capped scaling as in (4a). Cramer [6] (Sections 6.2 and
6.3) pointed out that in the context of logistic regression the related special case
of (6) was known at least since 1979. Note that (6) implies (1b) with T (η) =

p
q η

p
q η+ 1−p

1−q (1−η)
strictly increasing in η.

Under the label shift assumption, the following observation is well-known.
Define AUC (area under the curve) as in Section 3.3.

Proposition 1. Define the score S by S = ηP (X) and the score S∗ by S∗ =
ηQ(X). If P and Q are related through label shift then it follows that AUCS =
AUCS∗ .

Proposition 1 is a consequence of (3a) in Section 3.3 as well as (1b) and (6).
According to Proposition 1, recalibration under the assumption of label shift
leaves the implied performance under the target distribution – sometimes called
discriminatory power in the credit risk management literature (e.g. Bohn and
Stein [3]) – unchanged when compared to the implied performance under the
source distribution. In particular, Proposition 1 implies a necessary criterion for
distribution shift to be label shift. Accordingly, in case AUCS ̸= AUCS∗ source
distribution P and target distribution Q cannot be related through label shift.
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4.3 Recalibration under assumption of factorizable joint shift (FJS)

According to He at al. [10] and Tasche [25], the source distribution P (X,Y )
and the target distribution Q(X,Y ) are related through factorizable joint shift
(FJS) if there are functions g : X → [0,∞) and b : Y → [0,∞) such that
(x, y) 7→ g(x) b(y) for x ∈ X and y ∈ Y is a density of Q(X,Y ) with respect
to P (X,Y ), i.e. it holds that Q[(X,Y ) ∈ M ] = EP

[
1M (X,Y ) g(X) b(Y )

]
for all

measurable sets M ⊂ X × Y. See footnote 2 for the definition of the indicator
1M .

By Corollary 4 of Tasche [25] and subject to mild technical conditions, under
FJS the joint target distribution Q(X,Y ) is given by the target feature distrib-
tuion Q(X) and the class 1 posterior probability

ηQ(X) =

q
p ηP (X)

q
p ηP (X) + 1

ϱ
1−q
1−p (1− ηP (X))

, (7a)

where 0 < p

(1−p)EQ

[
ηP (X)

1−ηP (X)

] ≤ ϱ ≤ p
(1−p) EQ

[
1−ηP (X)
ηP (X)

]
and ϱ is the unique

solution to the equation

q = EQ

[
q
p ηP (X)

q
p ηP (X) + 1

ϱ
1−q
1−p (1− ηP (X))

]
. (7b)

Note that recalibration of ηP (X) to a target prior probability q under the as-
sumption of FJS works for arbritrary target feature distributions Q(X). This
is in stark contrast to recalibration under the assumption of label shift which
only works when assuming that Q(X) is given by (5). However, by Proposition 1
recalibration under the label shift assumption entails AUCηQ(X) = AUCηP (X).
The example in Section 5 below shows that AUC preservation is not in general
true for recalibration under the FJS assumption.

(7a) implies (1b) with T (η) = Tϱ(η) =
p
q η

p
q η+ 1

ϱ
1−p
1−q (1−η)

strictly increasing in

η. If ϱ happens to take the value 1, at first glance we are back in the context
of label shift as in Section 4.2 above. However, as (5) need not hold true under
the FJS assumption, in such cases there cannot be label shift. The type of shift
modelled instead is called ‘invariant density ratio’ shift (Tasche [23]), defined as
the special case of FJS with ϱ = 1.

4.4 Recalibration under assumption of covariate shift with posterior
drift (CSPD)

In Sections 4.1, 4.2 and 4.3, we identified the transformation T of (1b) after we
had described a recalibration method designed under assumption of one of three
types of distribution shift, namely slightly modified covariate shift, label shift,
and FJS. In contrast, in this section, we define T and use it to characterise the
type of distribution shift implied by the recalibration method.

According to Scott [19], the source distribution P (X,Y ) and the target distri-
bution Q(X,Y ) are related through covariate shift with posterior drift (CSPD)
if there is a strictly increasing transformation T such that (1b) holds true.
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As mentioned in Section 3.1, (1b) implies that ηP (X) is sufficient for X with
respect to Y under the target distribution Q. Since under CSPD the transforma-
tion T is strictly increasing, (1b) also implies that ηQ(X) and ηP (X) are strongly
comonotonic (Tasche [24]). As a consequence, Kendall’s τ and Spearman’s rank
correlation both take the maximum value 1 when applied to (ηQ(X), ηP (X)).
This suggests that CSPD is a strong assumption which might be less often true
than one would hope for. Nonetheless, comonotonicity of score and posterior
probability is a common assumption in the literature. Chen et al. [5] call this
assumption the rationality assumption.

If labels are available in the test dataset, under the CSPD assumption the
transformation T of (1b) can be approximately determined by means of isotonic
regression. However, the general assumption for this paper is that there are no
label observations for the instances in the test dataset. Therefore, we are going
to apply a moment matching approach instead (quasi moment matching, QMM).

To be able to do so, we consider parametric CSPD where the transformation
T of (1b) is specified as follows through some strictly increasing and continuous
distribution function F on the real line and parameters a, b ∈ R:

Ta,b(u) = F
(
aF−1(u) + b

)
, for 0 < u < 1. (8a)

This is not a radically new approach but rather a variation of what was called
regression-based calibration by Ojeda et al. [14]. Here are two examples for nat-
ural choices of F in (8a):

– Logistic distribution function (inverse logit): F (x) = 1
1+exp(−x) , x ∈ R. The

parametric CSPD approach with inverse logit is often called ‘Platt scaling’
in the literature. However, as pointed out by Ojeda et al. [14], ‘Platt scaling’
sometimes also refers to the specification of T as

Ta,b(u) =
1

1 + exp(−(a u+ b))
, for 0 < u < 1. (8b)

In the following, we use the term Platt scaling to refer to (8b) and logistic
CSPD to refer to (8a) with inverse logit.

– Standard normal distribution function (inverse probit): F (x) = Φ(x), x ∈ R.
We refer to this choice of F as normal CSPD.

The idea for quasi-moment matching (QMM) with parametric CSPD is to de-
termine the parameters a, b ∈ R by solving the following equation system:

q = EQ

[
Ta,b(ηP (X))

]
and AUCηP (X) = AUCTa,b(ηP (X)), (8c)

with Ta,b as in (8a) or (8b) and AUC defined in Section 3.3. More precisely, in
(8c), AUCηP (X) is computed with respect to P (X,Y ) while AUCTa,b(ηP (X)) is
computed as implied AUC with respect to Q(X). See Section 3.3 for the different
ways to compute AUC.

In (8c), AUC works like a second moment of the posterior probabilities. But in
contrast to its effect on the second moment or the variance, the prior probability
of the positive class has no effect on AUC. This makes the assumption of AUC
invariance between source and target distributions more plausible (Tasche [22]).
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Remark 1. One-parameter CSPD as in (8a) with b = 0 can be used for class
distribution estimation (also called quantification), i.e. to determine an unknown
class prior probability q = Q[Y = 1] under the target distribution. In this case,
instead of solving (8c) for two parameters a and b, the following equation is
solved for parameter a only:

AUCηP (X) = AUCTa,0(ηP (X)). (9a)

Then the mean of the resulting posterior probability ηQ(X) = Ta,0(ηP (X))
under the target distribution feature distribution Q(X) is computed to obtain
an estimate q̂ of q:

q̂ = EQ

[
Ta,0(ηP (X))

]
. (9b)

One-parameter CSPD may be interpreted as a modification of quantification
under the assumption of covariate shift. In contrast to assuming covariate shift
when AUC can differ between source distribution and target distribution, with
one-parameter CSPD by construction source AUC and target AUC are equal.

4.5 Quasi moment matching based on parametrised receiver
operating characteristics

There is no guarantee that the QMM approach presented in Section 4.4 is feasible
in the sense that there exists a solution to equation system (8c) or that the
solution is unique. This reservation motivates the following alternative approach
where instead of beginning with representation (8a) of the posterior probabilities,
the starting point is a parametrised representation of the receiver operating
characteristic (ROC) curve associated with the target distribution Q(X,Y ).

Tasche ([22], Section 5.2) modified an idea of van der Burgt [4] by assuming
the ROC curve of a real-valued score S to be

ROCS(u) = Φ
(
c+ Φ−1(u)

)
, u ∈ (0, 1), (10a)

for some fixed parameter c ∈ R, with Φ denoting the standard normal distri-
bution function. The ROC curve of (10a) emerges when the class-conditional
score distributions in a binary classification problem are both univariate normal
distributions with equal variances. But ROC curves like in (10a) may also be in-
curred in circumstances where the class-conditional distributions are not normal
(Proposition 5.3 of Tasche [22]).

Tasche [22] showed that (10a) implies the following representation for the
posterior probability given the score S under the target distribution Q:

Q[Y = 1 |S] =
1

1 + 1−q
q exp

(
c2/2− c Φ−1(F0(S))

) , (10b)

where F0(s) = Q[S ≤ s |Y = 0] stands for the class-conditional distribution
function of S given Y = 0.

For AUCS as defined in Section 3.3, (10a) implies AUCS = Φ
(

c√
2

)
. Hence,

if AUCS is known the parameter c of (10b) is determined by

c =
√
2Φ−1(AUCS). (10c)
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The score S in (10b) can be chosen as ηP (X) or any probabilistic classifier
which approximates ηP (X). The target prior probability q is known by general
assumption for this paper. Similarly to Section 4.4, for QMM to work one has
to make the assumption that a prudent choice of AUCS under the target distri-
bution (defined as implied AUC by (3b) and (3a) above) is informed by AUCS

observed in the training dataset such that by (10c) also parameter c is known.
However, the distribution function F0 of the score S conditional on Y = 0

appearing in (10b) is assumed not to be known under the target distribution
since by general assumption for this paper, only the features but not the labels
can be observed in the test dataset. Making use of (10b) therefore requires an
iterative approach where in each step a refined estimate of the negative class-
conditional score distribution function F0 is calculated.

Denote by f an unconditional density of S under Q and by f0 a density of
F0. Then the posterior probability Q[Y = 1 |S = s] can be represented as

Q[Y = 1 |S = s] = 1− (1− q) f0(s)

f(s)
(11a)

for s in the range S of S. By (10b), (11a) implies

f0(s) =
f(s)

1− q

(
1− 1

1 + 1−q
q exp

(
c2/2− c Φ−1(F0(s))

)) , s ∈ S. (11b)

In the case of scores S under a discrete or empirical distribution, as described
in Appendices A.1 and A.2, (11b) can be treated as a fixed point equation for
the probabilities Q[S = s |Y = 0] = f0(s) and be solved by a straightforward
fixed-point iteration with intial values Q[S = s], s ∈ S. The numerical example
of Section 5 below suggests that such an iterative approach converges as long as
the prior probability q is small and, hence, f and f0 are close to each other.

A further issue when making (10b) operational may occur when the class-
conditional distribution function F0 or any function approximating it takes the
value 1. In particular, this will happen if F0 is approximated by an empirical
distribution function. Then the term Φ−1

(
F0(s)

)
is ill-defined. See Appendix A.2

for a workaround to deal with this issue.
Deploying a discrete distribution F0 in (10b) as for instance an empirical

approximation, makes it unlikely if not impossible to exactly match a pre-defined
AUCS when using (10b). To control for the unavoidable deviation from the
AUCS objective in this case we take recourse to the original QMM approach as
proposed by Tasche [22]. Define

T ∗
a,b(S) =

1

1 + exp
(
b+ aΦ−1(F0(S))

) , (12a)

with F0 as in (10b) and parameters a, b ∈ R to be determined by quasi-moment
matching (QMM) like in (8c):

q = EQ

[
T ∗
a,b(S)

]
and AUCS = AUCT∗

a,b(S), (12b)

To distinguish the two recalibration approaches presented in this section, we
call the approach based on (10b) and (10c) ROC-based QMM and refer to the
approach based on (12a) and (12b) as 2-parameter QMM.
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5 Example

The example presented in this section illustrates the impact of the recalibration
methods and assumptions discussed in Section 4 on the following characteristics
of the target distribution:

– The class 1 posterior probabilities.
– The mean of the class 1 posterior probabilities (which ought to equal the

class 1 prior probability).
– The AUC implied by the class 1 posterior probabilities.
– The mean of the square root of the class 1 posterior probabilities as an

expample involving a concave function of the posterior probabilities.

For the example we chose discrete source and target distributions of a feature
(called score in the following) with values in an ordered set with 17 elements.
These distributions may be interpreted as empirical distributions of samples
with many ties or as the genuine distributions of discrete scores or ratings. For
instance, the major credit rating agencies Standard & Poor’s, Moody’s and Fitch
use rating scales with 17 to 19 different grades.

The source distribution is specified as follows: (1) The conditional feature
distribution for class 0 is a binomial distribution with success probability 0.4,
the conditional feature distribution for class 1 is a binomial distribution with
success probability 0.55. The number of trials for both binomial distributions
is 16 such that the support of the distribution is the set {0, 1, . . . , 16}. (2) The
class 1 prior probability is p = 0.01.

The target distribution is incompletely specified as follows: (1) The uncon-
ditional feature distribution is a binomial distribution with number of trials 16
whose success probability is a Vasicek-distributed random variable (Section 2.2
of Meyer [13]) with mean 0.3 and correlation parameter 0.3. (2) The target class 1
prior probability is q = 0.05.

Figure 1 shows3 the source and target unconditional score distributions. They
were intentionally chosen to be quite different such that any distribution shift
assumed for the recalibration must be significant.

Figure 2 presents the source posterior probabilities and eight different sets of
target posterior probabilities that have been calculated with the methods and
assumptions discussed in Section 4:

– Capped scaling: Section 4.1
– Label shift: Section 4.2
– FJS: Factorizable joint shift, Section 4.3
– Platt scaling: Section 4.4, Eq. (8b)
– ROC QMM: ROC-based QMM, Section 4.5, Eq. (10b) and Eq. (10c)
– 2-param QMM: 2-parameter QMM, Section 4.5, Eq. (12a) and Eq. (12b)
– Logistic CSPD: Section 4.4, Eq. (8a) with F (x) = 1

1+exp(−x)

– Normal CSPD: Section 4.4, Eq. (8a) with F (x) = Φ(x), the standard normal
distribution function

3 Calculations were performed with R (R Core Team [17]). Details of some more
involved calculations are described in Appendices A.1 and A.2. The R-scripts can
be downloaded from https://www.researchgate.net/profile/Dirk-Tasche.

https://www.researchgate.net/profile/Dirk-Tasche
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Fig. 1. Source and target score distributions for the example in Section 5.
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Fig. 2. Class 1 posterior probabilities for the example in Section 5. The scale of the
vertical axis is logarithmic. The dots for the probabilities have been connected with
straight lines for better readability. ‘Source’ refers to the posterior probabilities in the
source distribution without recalibration.
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Table 1. Results for the recalibration methods presented in Section 4. The row ‘Source’
shows the values for the source distribution without recalibration. The numbers in all
other rows refer to the target distribution. ‘mean(probs)’ is the class 1 prior probability
calculated as mean of the recalibrated posterior probabilities. ‘AUC’ is the area under
the ROC curve implied by the recalibrated posterior probabilities. ‘mean(sqrt(probs))’
is the mean of the square root of the recalibrated posterior probabilities.

Method mean(probs) AUC mean(sqrt(probs))
Source 0.010 0.802 0.084
Capped scaling 0.050 0.950 0.132
Label shift 0.060 0.930 0.160
FJS 0.050 0.932 0.142
Platt scaling 0.050 0.802 0.179
ROC QMM 0.049 0.799 0.191
2-param QMM 0.050 0.802 0.191
Logistic CSPD 0.050 0.803 0.192
Normal CSPD 0.050 0.802 0.192

All target posterior probabilities are well above the source posterior prob-
abilities. This does not come as a surprise given that the target class 1 prior
probability of 5% is much higher than the source class 1 prior probability of
1%. Otherwise, there are two groups of target posterior probability curves: The
curves based on capped scaling, label shift and FJS on the one hand, and the
curves based on the five QMM methods described in Sections 4.4 and 4.5 on the
other hand. The curves of the former group are rather steep compared to the
curves of the latter group.

Table 1 displays three characteristics for the source distribution as well as for
the eight different target distributions that result from the recalibration methods
discussed in Section 4. Concluding from the entries in the column ‘mean(probs)’,
only the recalibration method ‘label shift’ – introduced in Section 4.2 – is unre-
liable in so far as it does not achieve the required target class 1 prior probability
p = 0.05. With all seven other recalibration methods the target prior probability
is matched.

Column ‘AUC’ of Table 1 is more varied than column ‘mean(probs)’. For the
five QMM methods from Sections 4.4 and 4.5, AUC is essentially the same as
the AUC of 0.802 under the source distribution. This is a consequence of the
QMM design since one of the moment matching objectives is hitting the source
AUC. Thanks to Proposition 1, one might expect also the ‘label shift’ AUC to
match the source AUC. However, Proposition 1 is not applicable to the example
of this section because by design the target feature distribution is not a mixture
of the source class-conditional distributions. In any case, the high AUC values
for methods ‘capped scaling’, ‘label shift’ and ‘FJS’ cause the greater slopes of
their posterior probability curves in Figure 2 compared to the slopes of the QMM
posterior probability curves.

As an example for the application of a concave function to the target poste-
rior probabilities, we chose the function C(u) =

√
u, u ∈ [0, 1], and the related
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expected value EQ

[
C(ηQ(X))

]
under the target distribution. Note that (2) im-

plies 0.05 = q ≤ EQ

[√
ηQ(X)

]
≤ √

q ≈ 0.2236.
It is clear from column ‘mean(sqrt(probs))’ of Table 1 that AUC is a driver

of the mean of the concave function of the posterior probabilities. The lower the
value of AUC, the higher is the mean of the concave function of the probabilities.
Hence it makes sense to have AUC as a second objective to be matched, in
addition to requiring that the target class 1 prior probability is reached. But
even if both of these conditions are met there can still be variation in the mean
of the concave function. This is demonstrated by the ‘Platt scaling’ posterior
probabilities for which EQ

[√
ηQ(X)

]
takes a notedly lower value than for the

other four QMM posterior probabilities with almost identical values.

6 Conclusions

Recalibration of binary probabilistic classifiers to a target prior probability is
an important task in areas like credit risk management. This paper presents
analyses and methods for recalibration from a distribution shift perspective. It
has turned out that distribution shift assumptions linked to the performance in
terms of area under the curve (AUC) of a probabilistic classifier under the source
distribution are useful for the design of meaningful recalibration methods. Two
new methods called parametric CSPD (covariate shift with posterior drift) and
ROC-based QMM (quasi moment matching) have been proposed and have been
tested together with some other methods in an example setting. The outcomes of
this testing exercise suggest that the QMM methods discussed in the paper can
provide appropriately conservative results in evaluations with concave functions
like for instance risk weights functions for credit risk.

Acknowledgments. The author would like to thank two anonymous reviewers for
their useful comments and suggestions.
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A Appendix

A.1 The AUC of discrete auto-calibrated probabilitistic classifiers

How to calculate implied AUC for an auto-calibrated4 probabilistic classifier S
under a joint distribution µ(S, Y ) of S and Y ∈ Y = {0, 1}? We assume here
that the distribution of S under distribution µ is discrete, i.e. it is is given by
pairs of score values si and their probabilities µ[S = si] = πi > 0, i = 1, . . . , n.
Then it follows from the AUC-definition and properties in Section 3.3 that

AUCS =

∑n
i=2 πi si

(
1
2 πi(1− si) +

∑i−1
k=1 πk (1− sk)

)
(
1−

∑n
j=1 πj sj

)∑n
j=1 πj sj

(13)

We use (13) to compute imlied AUC both under the source distribution for S =
ηP (X) with µ = P and under the target distribtion for S = ηQ(X) = T

(
ηP (X)

)
with µ = Q. Note that ηP (X) under P and ηQ(X) under Q are both auto-
calibrated probabilistic classifiers (Proposition 1 of Vaicenavicius et al. [27]).

A.2 Adapting discrete distributions for QMM

Consider for the real-valued score or probabilistic classifier S with discrete dis-
tribution µ[S = si] = πi, i = 1, . . . , n, its distribution function G(s) = µ[S ≤ s]
for s ∈ R. If the si are increasingly ordered with s1 < . . . < sn, then we obtain
G(si) =

∑i
j=1 πj , for i = 1, . . . , n. In particular, it follows G(sn) = 1 such that

Φ−1
(
G(sn)

)
= ∞ for the standard normal distribution function Φ and for the

logistic distribution function.
For the purpose of this paper, to avoid this problem we apply the workaround

proposed by van der Burgt [4]. He suggested replacing the distribution function
G with the mean of itself and its left-continuous version, i.e. with G∗ defined by
G∗(s) = 1

2

(
µ[S ≤ s] + µ[S < s]

)
, for s ∈ R.

This implies for the si which represent the support of µ that G∗(si) =(∑i
j=1 πj

)
− πi/2, for i = 1, . . . , n.

4 The probabilistic classifier S is auto-calibrated if for all s in the range of S it holds
that µ[Y = 1 |S = s] = s (Tsyplakov [26], Section 2.2).

https://mpra.ub.uni-muenchen.de/45186/
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Abstract. Quantification is a supervised learning task focused on esti-
mating the prevalence of classes in unlabeled test sets. Although existing
quantification methods are effective under prior probability shift, they
often fail under more general distribution shift scenarios. In this pa-
per, we introduce QuaDapt, a generic and flexible framework that makes
classifier-based quantifiers more resilient to distribution shifts. Rather
than explicitly modeling specific types of concept drift, QuaDapt focuses
on adapting the quantifier parameters based on the classifier score dis-
tribution observed in the test set. QuaDapt updates the quantifier’s pa-
rameters without requiring labeled test data or retraining. We evaluate
QuaDapt using artificially generated score distributions to simulate con-
trolled variations in score complexity, as well as on real-world datasets
where changes were induced to affect classifier outputs. In artificial exper-
iments, standard quantifiers performed poorly, even as test score distri-
butions became easier. In contrast, QuaDapt effectively reduced the quan-
tification error in these scenarios. On 12 real-world datasets with con-
cept drifts, QuaDapt consistently enhanced all quantifiers’ performance,
demonstrating its practical effectiveness and robustness.

Keywords: Dataset shift · Concept drift · Quantification.

1 Introduction

Real-world machine learning systems often face problems in non-stationary envi-
ronments, where the data observed during deployment differs from the training
data [9]. Machine learning methods rely on the assumption that training and
test data are drawn from the same underlying distribution. This encompasses
assumptions regarding the stability of class priors, class conditional distribu-
tions, and marginal distributions. However, these assumptions are often violated
in practice, which can significantly degrade the performance and reliability of
machine learning models when deployed in real-world environments.

Over the years, the machine learning community has extensively studied dis-
tribution shifts across various problem settings [23,26]. In particular, significant
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progress has been achieved in the context of classification, encompassing prob-
lem formalization as well as detection and adaptation methods for distribution
shifts [12,27]. However, in less popular or newly formulated tasks, the under-
standing of how distribution shifts hinder the models remains poorly explored.
One such task is quantification, a supervised learning task formalized by Forman
(2005) [10] that aims to estimate the prevalence of each class in an unlabeled
test set, rather than assigning labels to individual instances. A straightforward
method involves classifying each instance and then counting the number of in-
stances predicted for each class. This method, named Classify and Count (CC),
suffers from the systemic error introduced when the class distribution drifts [5].

From Forman’s seminal paper [10], a new machine learning community emer-
ged, proposing a wide range of methods to tackle this task. Most of the existing
approaches rely on a classifier in a preliminary step to produce either hard pre-
dictions or probabilistic scores on the test set. Then, different strategies are
employed to infer the class distribution, including simple adjustments based on
error rates, probabilistic modeling, and distribution matching [24,11,1,16,22,17].

Although there are contributions to make machine learning tasks more re-
silient against distribution shift scenarios, a gap remains in the literature re-
garding strategies that enhance the resilience of quantification under shift sce-
narios. The most recent contributions on this topic are the works of González
et al. (2024) [15] and Maletzke et al. (2021) [20], which analyzed quantification
methods under distribution shifts and proposed the first quantification method
resilient to distribution shifts, respectively.

In this paper, we propose a generic framework that transforms any classifier-
based quantifier into a drift-resilient version by updating its internal parameters
using synthetic scores aligned with the estimated test set scores. Similarly to
Maletzke et al. (2021), we do not assume any particular form of concept drift
or shift. Instead, our framework updates the training-derived posterior probabil-
ities by aligning them with the posterior probabilities observed at deployment
through a mixture-model matching process. Based on this alignment, the frame-
work re-estimates the quantifier parameters that depend on these probabilities,
such as tpr, fpr, and the posterior probabilities themselves. Thereby, it adapts
the quantifier to the current test conditions without requiring labeled data or
retraining.

We evaluate the effectiveness of the proposal in both artificial and real-world
scenarios. In the first, we systematically varied the complexity of classifier score
distributions using synthetic data. This enabled us to isolate the effect of dis-
tribution shifts on quantifier performance. The results reveal a counterintuitive
behavior of the current quantifiers, which performed poorly even when the test
distributions became easier. In contrast, the QuaDapt quantifiers version demon-
strated significantly improved robustness, effectively reducing quantification er-
rors. In the second scenario, we show that the proposal consistently enhances the
performance of all tested quantifiers. Notably, the QuaDapt-adapted quantifiers
outperformed their standard counterparts in ten of the 12 datasets, including
five datasets where they achieved improvements across all evaluated quantifiers.
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The structure of this paper is as follows: Section 2 we present the paper
background, including differences between classification and quantification tasks,
types of distribution shifts, and a method to tackle quantification in shift sce-
narios. Section 3 presents the framework proposed for converting classifier-based
quantifiers into resilient quantifiers in shift environments. Section 4 depicts the
experimental setup and Section 5 presents the empirical results and discussion.
Finally, Section 6 concludes this work and presents directions for future work.

2 Background

Quantification is a supervised learning task that aims to estimate the class dis-
tribution in an unlabeled test set. This task is closely related to the well-known
classification task. For instance, both tasks operate over the same feature rep-
resentation and assume a nominal output variable that defines the class label.
Moreover, many quantification methods depend on a classifier in a preliminary
step to produce either hard predictions, probabilistic scores, or error rates, which
serve as the basis for estimating the class distribution in the test set [13].

Hence, defining the quantification task requires the classification definition.
Let h be a classifier induced from a train set D = {(x1, y1), ...(xn, yn)}, where
xi ∈ X is a m-dimensional vector in the feature space X with m attributes and
yi ∈ Y = {c1, ..., cl} the respective class label. Therefore, a classifier is defined
as a model h induced from D such that [20]:

h : X → {c1, ...cl}

In binary tasks, the output space Y comprises two classes, the positive class
(c1 = ⊕) and the negative class (c2 = ⊖). A classifier h aims to assign a class label
to unseen instances by thresholding the values provided by a scoring function hs :
X → R that predicts a numerical value correlated to the posterior probability
P (yi = ⊕ | xi). This value indicates the likelihood that xi belongs to the positive
class [10,20].

On the other hand, quantification aims to estimate the prevalence of classes
within a given test sample S ∈ S, rather than assign labels to individual instances
as in classification. Accordingly, a quantifier is defined as follows [20]:

q : SX → [0, 1]l

where SX represents all the possible samples from X . In a binary scenario, a
quantifier estimates a vector p̂ = {p̂⊕, p̂⊖}, where p̂⊕ represents the posterior
probability estimation for the positive class, such that p̂⊕ + p̂⊖ = 1 [20].

Classify and Count (CC) is one of the simplest quantification methods, es-
timating class prevalence by applying a classifier to the test set and counting
the number of instances predicted for each class. However, despite its simplic-
ity, CC suffers from flagrant shortcomings. The most notable is the systematic
error introduced when the class distribution in the test set differs from that of
the training data [14]. While CC can yield accurate estimates in the rare case
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where the false positive rate (fpr) equals the false negative rate (fnr), it gen-
erally performs poorly under prior shift, which is precisely the scenario where
quantification is most relevant. In stationary settings, one could simply use the
class proportions from the training set, making quantification unnecessary. Thus,
CC’s sensitivity to distribution shift severely limits its applicability in real-world
quantification tasks.

Although quantification is an emergent task within the machine learning
field, several methods have been proposed to overcome the known deficiencies of
Classify and Count. In recent years, the community has introduced a variety of
strategies aimed at improving quantification accuracy under distribution shift.
A well-established taxonomy, proposed by González et al. (2017) [14], organizes
these methods into three main categories based on how they leverage classifier
outputs and adjust for distributional changes: (i) classify, count & correct, (ii)
adaptation of classification algorithms, and (iii) distribution matching.

In this paper, we focus on quantification methods that rely on a classifier in
previous steps, aiming to analyze their behavior under distribution shift scenarios
and propose a framework to enhance their robustness. Therefore, we restrict our
focus on methods from the group (i) and (iii) that are summarized in Table 1,
along with their respective descriptions and references.

Table 1: Quantification taxonomy
Group Quantifier Brief Description Reference

I

CC Classify & Count

[10,11]

ACC Adjusted Classify & Count
X Classifier with decision threshold adjusted such that fnr 1 = fpr 2

MAX Classifier with decision threshold chosen such that tpr 3 = fpr is
maximum

T50 Classifier with decision threshold adjusted such that tpr = 50%
MS Median of Classify & Count computed along all decision threshold

values

III
HDy Mixture model with Hellinger distance [16]
DyS Framework for Mixture models [22]
SMM Sample Mean Matching [17]

Although widely used and recognized in the quantification literature for their
effectiveness in estimating class prevalence, most existing methods are explicitly
designed to handle variations in the prior class distribution P (Y ). However, de-
spite their widespread adoption in many studies [1,21,8,17,25,6,18], these meth-
ods often overlook other important forms of distribution shift, which are common
in real-world applications and can substantially impair quantifier performance.

This oversight represents a significant limitation, as real-world data is seldom
stationary and often undergoes complex, evolving shifts that can compromise
the reliability of classifier-based quantifiers. González et al. (2024) [15] recently

1 False Negative Rate (fnr): proportion of positives incorrectly predicted as negatives.
2 False Positive Rate (fpr): proportion of negatives incorrectly predicted as positives.
3 True Positive Rate (tpr): proportion of positives correctly predicted as positives.
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highlighted these issues, emphasizing the need to better understand and address
the vulnerabilities of quantification methods in the face of a broader range of
distribution shifts. In the following section, we will present various types of dis-
tribution shifts that can severely impact the performance of current quantifiers.

2.1 Distribution Shifts

Supervised learning methods typically assume that training and test data are
drawn from the same distribution. However, this assumption rarely holds in real-
world scenarios, where changes in the underlying data are common. In the con-
text of quantification, the primary focus has been on handling prior probability
shift, where the class distribution P (Y ) changes between training and test sets.
While many quantifiers have been designed under this assumption, they often
neglect other types of shifts, such as changes in the feature distribution P (X)
or the class-conditional distribution P (X|Y ). These additional forms of shifts
can severely degrade quantification accuracy, especially for methods that rely on
classifier-derived information. As highlighted by González et al. (2024) [15], the
performance of many state-of-the-art quantifiers deteriorates substantially under
realistic drift scenarios, revealing a critical need for more resilient approaches.

According to González et al. (2024) [11], the following changes can affect
quantification methods:

Prior Probability Shift: refers to changes in the class distribution between
training and test data. Formally, this condition is characterized by P tr(Y ) ̸=
P ts(Y ), where P tr(Y ) and P ts(Y ) denote the class distributions in the train-
ing and test sets, respectively.

Covariate Shift: refers to changes in the marginal distribution of features
changes between training and test sets, formally P tr(X) ̸= P ts(X), while
the posterior class probabilities remain stable, i.e., P tr(Y |X) = P ts(Y |X).
This implies that the predictive relationship between features and labels is
preserved, even though the distribution of features itself varies.

Concept Drift: refers to changes in the relationship between features and
classes, specifically P (Y |X), which can also affect P (X|Y ). This drift can
be particularly challenging to detect and manage, as it implies that the un-
derlying patterns that link features to classes have evolved over time [15].

These data shifts can significantly impact the outcomes of quantification mod-
els, due to their effect on the scores assigned by a scorer. Maletzke et al. (2021) [20]
analyze the impact of distributional changes on quantification by examining how
such shifts affect the complexity of score distributions produced by binary clas-
sifiers. In their seminal work, they demonstrate that even when changes simplify
the underlying decision boundary, effectively making the classification task eas-
ier, most quantification methods (with the exception of CC) still suffer from
significant performance degradation. This counterintuitive behavior reveals a
critical vulnerability and highlights the lack of robustness in existing quantifiers
when faced with shifts that alter the complexity of score distribution.



QuaDapt: Drift-Resilient Quantification via Parameters Adaptation 69

In [20], the authors proposed DySyn, a quantification method resilient to
distribution shifts based on the quantifier DyS [22] and the method Model for
Score Simulation (MoSS). In this paper, we extend the work of Maletzke et
al. (2021) [20] by proposing a general framework that transforms any classifier-
based quantifier into a distribution shift–resilient quantifier. MoSS and DySyn
are described in the next sections.

2.2 MoSS

Classification scores can be evaluated to detect mismatches between training and
test data. In binary classification, if the classifier accurately models the concept
of each class, then the scores generated by the classifier for each class will be
far apart from each other. Maletzke et al. (2021) [20] noted in their paper that,
in some circumstances, when a distribution shift occurs during the deployment
phase, the predicted score distributions change, impacting the accuracy of quan-
tifiers. They proposed modeling a new training score distribution based on the
predicted score distribution from the deployment phase and then reapplying the
quantifier. To model new training scores, Maletzke et al. (2021) [20] proposed
the Model for Score Simulation (MoSS).

The MoSS model produces two synthetic distributions, simulating the scores
of the positive and negative class labels, parameterizing the overlap between the
scores of each class. Thus, beyond generating artificial scores, parameterization
enables MoSS to produce scores that emulate different scenarios of complexity
between the positive and negative classes.

MoSS relies on three parameters: the merging factor m, which ranges from
0 to 1, controlling the overlap degree between the positive and negative scores
(0 representing the easiest scenario with well-separated scores, while 1 indicates
the most challenging case with highly overlapping scores), the number of obser-
vations n, and α that defines the proportion of the positive class [20]. The MoSS
model is presented in the following equation:

MoSS(n, α,m) = syn(⊕, ⌊αn⌋,m) ∪ syn(⊖, ⌊(1− α)n⌋,m)

where,

syn(⊕, n,m) =
⋃n

i=1 {Xm
i }, Xi ∼ U(0, 1)

syn(⊖, n,m) =
⋃n

i=1 {1−Xm
i }, Xi ∼ U(0, 1)

A synthetic score in MoSS can be defined as a non-linear map of a uniformly
distributed random variable ranging in [0, 1], enabling flexible generation of dif-
ferent degrees of overlap between positive and negative scores. This synthetic
generation process plays a central role in the DySyn method, which we present
in the following section.

2.3 DySyn

In [20], the authors explored quantification to deal with distribution shifts by
modifying methods based on the test set. The authors proposed the quantifi-
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cation algorithm named as Distribution y-Similarity (DySyn) using Synthetic
Scores. DySyn combines the DyS framework and the MoSS model.

DyS aims to find the optimal mixture of positive and negative scores (Str
⊕

and Str
⊖ , respectively), estimated from the training set, by searching for the α

(proportion of the positive class) value that minimizes the distance function DS
between the resulting mixed distribution and the test set distribution S⊙. The
DyS is defined as follows:

DyS(Str
⊕ , Str

⊖ , S⊙) = argmin
0≤α≤1

{
DS

(
αR[Str

⊕ ] + (1− α)R[Str
⊖ ], R[S⊙]

)}
where S⊙, R, and DS are the scores of the test set, a representation function,
and a distance function to operate over R representation, respectively.

In summary, DySyn runs an additional search across multiple values of the
MoSS merging factor(m), selecting the one that generates the mixed score dis-
tributions most similar to the test scores according to a distance function. This
adaptive mechanism enables DySyn to align with the underlying score distribu-
tion of the test data, making it more robust against distribution shifts. DySyn
is formally defined as follows:

DySyn(S⊙) = argmin
0≤α≤1

s.t. 0≤m≤1

{DS
(
R[MoSS(n, α,m)], R[S⊙]

)
}

2.4 Related Works

Quantification methods are designed to address prior probability shift, which
refers to changes in the class distribution P (Y ) between training and test data.
However, other types of distribution shift, such as changes in the feature dis-
tribution P (X) or in the class-conditional distribution P (X|Y ), can also affect
machine learning models, including quantifiers. While these types of shifts have
been extensively studied in the classification literature, they are overlooked in
the context of quantification.

This gap remains poorly explored, with only a few recent efforts addressing
the effects of broader distribution shifts. Maletzke et al. (2021) [20] discussed in
their research the flaws of classic quantification methods. To address the limita-
tions of standard quantifiers, Maletzke et al. (2021) [20] proposed an innovative
method referred to as DySyn, which modifies DyS utilizing MoSS to identify an
optimal fit for the score distribution based on a new dataset from a test set,
rather than relying on training scores. DySyn was evaluated across 12 real-world
datasets, outperforming 15 state-of-the-art quantifiers.

González et al. (2024) [15] assessed the performance of different quantification
methods under three types of drift: (1) prior probability shift, (2) covariate shift,
and (3) concept shift. The authors demonstrate that while literature quantifiers
are resilient to prior probability shifts, they perform poorly under other types
of drift, and this issue remains underexplored.
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3 Proposal

In this paper, we extend the DySyn method, showing that it is an instance
of a more general and non-formalized framework, enabling any classifier-based
quantifier to adapt its behavior without requiring access to labeled test data or
retraining, thus ensuring robustness in real-world non-stationary environments.

To formalize the framework, consider q a binary quantifier that predicts the
class prevalence p̂ in the test set as follows:

p̂ = q(hS(S
⊙), Θ)

where hS , S⊙, and Θ represent the scorer, the unlabeled test set, and the
quantifier parameters, respectively. Quantifier parameters Θ vary according to
the quantification method, ranging from classifier performance metrics to class-
conditional scores in distribution matching methods. For the sake of clarity, we
categorize the quantifier parameters based on the taxonomy of quantification,
as follows:

– For classify, count & correct methods (e.g., ACC and MS), include clas-
sifier performance metrics such as true positive rate (tpr ) and false positive
rate (fpr), which are typically derived from the training set using a decision
threshold τ .

– For distribution matching methods (e.g., DyS and HDy), Θ consists pri-
marily of class-conditional scores. Additionally, score representations (e.g.,
histograms or kernel functions) and their respective hyperparameters (e.g.,
the number of bins and kernel type), along with the similarity function, are
also parameters in this category.

In both groups, the class-conditional scores represent a fundamental pa-
rameter, i.e., their degree of separation determines the difficulty of the quantifi-
cation problem. Well-separated class-conditional scores correspond to an easier
scenario, which typically translates into higher tpr and lower fpr for correction-
based methods, as well as into clearer and more discriminative score representa-
tions for distribution-matching methods.

As noted by Maletzke et al. (2020) [21] and Maletzke et al. (2018) [19], con-
cept drift is often manifested as changes in the complexity of class-conditional
scores, since shifts in the data distribution directly affect how the classifier sepa-
rates positive and negative instances. For this reason, in this paper, we consider
the class-conditional scores as the primary parameters for both groups of quan-
tifiers, while keeping the remaining parameters, such as threshold, similarity
functions, or representation formats, fixed.

For a given training set D = {(x1, y1), . . . , (xn, yn)}, the positive and neg-
ative class-conditional scores can be obtained through k-fold cross-validation.
Therefore, a generic function to obtain the remaining quantifier parameters can
be defined as follows:

Θ = Ψ(Str
⊕ , Str

⊖ , τ)
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where τ represents the classification threshold used on the class-conditional
scores for calculating performance measures, true positive rate (tpr), and the
false positive rate (fpr). For example, given the training score distributions Str

⊕
and Str

⊖ , different choices of τ (e.g., decision thresholds) will produce distinct
values for tpr and fpr, impacting on the quantifiers accuracy.

In contrast to relying on fixed training-derived parameters, Maletzke et al.
(2021) [20] noted that modifying the training scores of the DyS method based
on the test set leads to more resilient results under drift scenarios. Based on
this assumption, we propose Drift-Resilient Quantification via Parame-
ters Adaptation (QuaDapt), a generic framework for quantifying in dynamic
environments. Our framework, QuaDapt, concentrates on updating the class-
conditional scores parameter, which represents the core parameter across both
quantification methods groups. By realigning these scores with the character-
istics of the test set, QuaDapt effectively influences both classify, count &
correct methods, where performance measures such as tpr and fpr depend on
score distributions, and distribution matching methods, where prevalence is
inferred by comparing score distributions directly. Therefore, adapting class-
conditional scores serves as a general mechanism that enhances the robustness
of quantifiers across both categories under drift scenarios.

Figure 1 provides a conceptual overview of how the QuaDapt framework oper-
ates. Starting from a labeled training set, a scorer hS is fitted to produce posterior
scores. During deployment, when an unlabeled test set arrives, the scorer out-
puts the test scores S⊙. Instead of relying solely on the training-derived scores,
QuaDapt generates multiple sets of synthetic scores using MoSS, varying the
mixing factor m to represent different levels of class separability. The framework
then searches for the synthetic distribution that minimizes the dissimilarity (DS)
with the observed test scores S⊙. The selected synthetic scores Ŝ⊕ and Ŝ⊖ are
finally used to re-estimate the quantifier parameters Θ̂, which include correc-
tion factors such as tpr, fpr, and DyS’s histograms. By realigning parameters in
this way, QuaDapt adapts the quantifier to the actual test conditions, ensuring
robustness under distribution shifts.

QuaDapt is formally defined as follows:

p̂ = QQuaDapt

(
q[hS(S

⊙), Θ̂]
)

where q is a quantifier that requires a classifier or scorer as a previous step, and
Θ represents the q parameters updated by the same Ψ procedure, as follows:

Θ̂ = Ψ(Ŝ⊕, Ŝ⊖, τ)

where:

– Ŝ⊕, Ŝ⊖: synthetic scores for the positive and negative classes, respectively,
generated using MoSS with a mixing factor m. The mixing factor is selected
minimizing the dissimilarity (DS) between the combined synthetic distribu-
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Fig. 1: Schematic representation of QuaDapt. Parts of this figure are adapted from [20].

tion and the distribution of test scores S⊙, defined as follows:

m = argmin
0≤α≤1

s.t. 0≤m≤1

{DS
(
R[MoSS(n, α,m)], R[S⊙]

)
}

where R and n are the representation function (e.g., histogram or Cumulative
Distribution Function) and number of synthetic scores generated by MoSS;

– τ : same decision threshold used in training-based estimation, required to
compute classifier metrics such as tpr and fpr.

4 Experiments

To evaluate our framework, we adopt the experimental setup introduced by
Maletzke et al. (2021) [20]. Our evaluation is organized into two experiments,
each designed to analyze the behavior of quantifiers under different conditions
of distribution shift, reflected in the complexity of classifier scores.

In the first experiment, we leverage artificial score generation, using the
MoSS model, to produce test scores with varying levels of complexity between
training and test phases. A key advantage of using MoSS is that it allows us
to abstract away from the specific source of data drift (e.g., covariate shift or
concept drift). This setup enables a controlled evaluation of how well quantifiers
can adapt to changes in score complexity, even in cases where the test-time
classification task becomes easier. Thus, when the decision boundary becomes
simpler, the expected result is improved quantifier performance, as observed in
the classification task.

In the second experiment, we extend the analysis to a collection of real-
world datasets. We explicitly enforce concept drift by modifying the test data so
that the classification task becomes either simpler or more challenging relative to
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the training data. The goal is to assess how the quantification methods perform
in realistic scenarios.

In both experiments, we evaluated the quantifiers listed in Table 1, ensur-
ing consistency across experimental conditions. The QuaDapt framework adjusts
classifier-based quantifiers by aligning artificial positive and negative score dis-
tributions with those observed in the test set, using a MoSS merging factor m
varied from 10% to 90% in 20% increments to generate diverse training score
distributions. The performance of each method was assessed using the Mean
Absolute Error (MAE), which quantifies the average absolute difference between
the predicted and true prevalence of the positive class. Additionally, for the DyS
method, the Topsøe distance was used as the divergence measure to guide its
internal optimization process.

4.1 Experiment 1 - Artificial Scores

Our first experiment was designed to evaluate the existing quantification meth-
ods and the proposed framework under drift scenarios, without requiring ma-
nipulation of real datasets to induce distribution shifts.

Using MoSS, we generate synthetic training and test scores with varying
levels of complexity, adjusting the merging factor m. Thus, we systematically
control the separation between positive and negative score distributions, enabling
the simulation of both easier and harder decision boundaries. This setup allows us
to evaluate quantification performance across a range of drift scenarios where the
score distributions differ between training and testing at controlled intensities,
without being tied to a specific type of real-world shift.

In the training phase, we generated a total of 2,000 synthetic scores, 1,000
for the positive class (⊕) and 1,000 for the negative class (⊖), varying the MoSS
merging factor for training (mtr) from 5% to 95% in increments of 5%. For each
training configuration defined by mtr, we then evaluated multiple test scenarios
by varying the following parameters in the testing phase:

– Test size: fixed at 100 instances, i.e., 100 score values per test set;
– Class proportion : from 0% to 100% in increments of 1%;
– MoSS merging factor for test (mts): varied from 5% to 95% in increments

of 5%, simulating of test score distributions with different complexities;
– Replicates: each configuration was randomly repeated 10 times.

4.2 Experiment 2 - Real-world datasets

Our second experiment was designed to assess the performance of existing quan-
tification methods and the proposed QuaDapt framework on real-world datasets.
We adopt the experimental setup originally described in [20] to evaluate the
standard quantifiers and quantifiers integrated into the QuaDapt framework.

Table 2 presents a brief description of the datasets. The datasets were ob-
tained from UCI [4] and OpenML [28] repositories3. As performed by Maletzke
3 Specific citations are requested for Avila [3] and Walking [2]. Jock A. Blackard and

Colorado State University preserve copyright over Covertype.
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et al. (2021) [20], we use multi-class datasets that are converted into binary prob-
lems by grouping the classes into positive and negative classes. The selection of
class labels for the positive and negative classes was conducted strategically to
create a subset of positive classes and two distinct subsets of negative classes,
referred to as easier and harder. This setup was designed to simulate scenar-
ios with varying complexity, thereby enabling the evaluation of quantification
methods under different degrees of concept drift.

Table 2: Datasets description [20].

Dataset Classes Positive

Negative Class
Easier Subclass Harder Subclass

Classes Overlap F1 Classes Overlap F1
Name (%) Score Name (%) Score

Avila 12 [A] [I] 0.43 0.99 [E,F,G,H,X] 6.83 0.86
Chess game 18 [fourteen] [zero,...,nine] 3.05 0.98 [thirteen] 21.33 0.82
Covertype 7 [Ponderosa_Pine] [Krummholz] 5.06 0.94 [Doug.,Aspen,Cott.] 23.69 0.81
Dermatology 6 [6] [3] 0.00 1.00 [1,4,5] 0.30 0.97
HAR 6 [5] [6] 0.00 1.00 [4] 7.45 0.93
Land-use 8 [Corn] [Hay] 0.16 1.00 [Soybeans] 20.76 0.74
MFeat 10 [3,5] [2,9,10] 2.54 0.99 [4,7,8] 19.31 0.81
Mosquitoes 3 [Ae.aegypti ♀] [An.aquasalis ♂] 2.31 0.98 [Cx.quinquefasciatus ♀] 27.44 0.76
Nursery 5 [priority] [not_recom] 0.00 1.00 [very_recom,spec_prior] 9.15 0.92
Phishing URL 5 [Defacement] [benign] 1.38 0.99 [malware,phishing] 4.35 0.98
Satimage 6 [4] [2] 0.46 0.99 [3,5,7] 19.74 0.80
Walking 22 [6] [10] 1.22 0.99 [9,12] 43.39 0.79

To build the positive and negative classes (easier and harder), each dataset
is split into training and test sets. A Random Forest classifier is then fit on the
training set, and the predicted scores are obtained for the test set. We then com-
puted the overlapped area between the positive and negative score distributions.
A smaller overlap area indicates a simpler scenario, while a larger overlap reflects
greater ambiguity between classes and thus a more complex setup. This proce-
dure was systematically repeated to identify the easier and harder negative class
groupings for each dataset. In addition, we computed the F1-Score to illustrate
the difference between easier and harder scenarios, providing a complementary
view of difficulty beyond overlap measurements.

Columns three, four, and seven in Table 2 represent the subclasses that com-
pose the positive and negative classes, including the easier and harder negative
subclasses for each dataset. Columns five, six, eight, and nine illustrate the in-
tersection of the easier and harder negative subclasses with the positive class,
respectively.

Therefore, after defining positive and negative classes, along with easier and
harder subclasses, we sample each dataset according to the same distribution
for every class. Then we split each dataset into two halves: training and test sets.
We perform stratified sampling to preserve the distribution of the positive and
negative subclasses. In the training portion, we apply 10-fold cross-validation to
generate the score distributions required by the mixture models and to estimate
the tpr and fpr rates employed by the quantifiers from the Classify, Count, and
Correct group. We generate all classifier scores using Random Forests with 200
trees. In addition, we train a single Random Forest model, using the entire
training set, to produce the test scores used in the evaluation phase.
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To simulate realistic drift scenarios in our real-world experiment, we adhered
to the Artificial Prevalence Protocol (APP) [7,24] by extracting multiple samples
from the test set and systematically varying the prevalence of both positive and
negative subclasses. We explored different combinations of easier and harder
negative subclasses to create test distributions with varying levels of complexity.
The configuration space for this experimental setup is detailed below:

– Positive Class Proportion: varied from 0% to 100% in increments of 1%;
– Harder Negative Subclass Proportion: from 0% to 100% in increments

of 25%;
– Test Set Size: fixed at 100 instances per test sample;
– Replicates: each configuration was randomly repeated 10 times.

The quantifiers were assessed by conducting a statistical comparison between
the original methods and their QuaDapt version. We utilized a paired two-tailed
t-test to determine whether the observed differences in performance, measured
by MAE, were statistically significant for each dataset.

5 Results

We open this section presenting the results of our first experiment, designed
to assess quantifiers performance under controlled variations in score complexity.
Although both mtr and mts were independently varied across a wide range, we
present plots of MAE as a function of mts for only four selected fixed values of
mtr. This allows us to illustrate representative patterns while maintaining clarity
in visual analysis. These results are presented in Figure 2.

Solid red lines indicate the performance of the standard quantifiers, while
dashed green lines illustrate the results of their corresponding QuaDapt-adapted
versions. The solid blue line represents the baseline CC method. The vertical
dashed lines mark the point where mtr = mts.

To the right of the vertical line (mts > mtr), the problem becomes increas-
ingly difficult, as the overlap between class score distributions grows. In these
scenarios, MAE tends to rise for both standard and adapted methods, which is
expected. However, to the left of the vertical line (mts < mtr), the test score
distributions become more separable, making the classification problem easier.
In such cases, standard quantifiers surprisingly continue to exhibit poor perfor-
mance, failing to exploit the increased separability.

This undesirable behavior of standard quantifiers under easier test conditions
was also observed by Maletzke et al.(2021) [20]. However, the results in Figure 2
show that our proposal transforms classifier-based quantifiers into more resilient
quantifiers when faced with these favorable changes. This represents a significant
improvement, as the inability to take advantage of easier scenarios represents a
serious limitation in practical applications of quantification.

Our second experiment aims to evaluate the effectiveness of our frame-
work under realistic conditions. We adopted the experimental protocol described
in [20]. Table 3 reports the MAE for each quantifier across 12 datasets. For each
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Fig. 2: MAE for fixed values of mtr ∈ {0.10, 0.30, 0.50, 0.70}, as mts varies. Vertical
dashed lines indicate the point where mtr = mts.

quantifier, we present results in pairs: the first line corresponds to the origi-
nal (unadapted) quantifier, and the second line to its QuaDapt version. The best
MAE values for each dataset are shown in bold, with the corresponding standard
deviation reported in parentheses. Results that are statistically better (p < 0.05)
are underlined.

The row QuaDapt win rate shows, for each dataset, the percentage and abso-
lute number of cases where the QuaDapt quantifiers outperformed their standard
counterparts in terms of MAE.

Notably, in five out of the twelve datasets, our proposal improved the perfor-
mance of all evaluated quantifiers (win rate = 100%), demonstrating consistent
effectiveness across diverse scenarios. Furthermore, in ten out of twelve datasets,
the QuaDapt framework enhanced the performance of at least half of the evalu-
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Table 3: Mean absolute error of standard quantifiers and their corresponding QuaDapt
versions across all datasets.

Quantifiers Avila Chess game Covertype Dermatology HAR Land-use
Baseline (CC) 0.056 (0.039) 0.045 (0.033) 0.077 (0.053) 0.002 (0.005) 0.017 (0.015) 0.061 (0.041)
ACC 0.065 (0.044) 0.052 (0.037) 0.059 (0.045) 0.002 (0.005) 0.026 (0.020) 0.084 (0.059)
ACCQuaDapt 0.046 (0.054) 0.031 (0.026) 0.057 (0.055) 0.002 (0.005) 0.017 (0.015) 0.048 (0.037)
X 0.060 (0.041) 0.046 (0.033) 0.070 (0.054) 0.003 (0.006) 0.020 (0.014) 0.071 (0.046)
XQuaDapt 0.046 (0.054) 0.030 (0.027) 0.056 (0.054) 0.002 (0.005) 0.017 (0.015) 0.048 (0.037)
MAX 0.070 (0.061) 0.046 (0.038) 0.071 (0.057) 0.002 (0.005) 0.020 (0.014) 0.085 (0.075)
MAXQuaDapt 0.050 (0.061) 0.034 (0.030) 0.062 (0.064) 0.002 (0.005) 0.017 (0.015) 0.052 (0.044)
T50 0.153 (0.110) 0.127 (0.088) 0.073 (0.059) 0.089 (0.067) 0.164 (0.102) 0.160 (0.110)
T50QuaDapt 0.094 (0.092) 0.088 (0.086) 0.121 (0.104) 0.211 (0.127) 0.144 (0.103) 0.091 (0.085)
MS 0.156 (0.118) 0.109 (0.071) 0.085 (0.063) 0.022 (0.019) 0.119 (0.088) 0.143 (0.097)
MSQuaDapt 0.074 (0.060) 0.060 (0.049) 0.096 (0.070) 0.120 (0.106) 0.073 (0.044) 0.063 (0.052)
HDy 0.079 (0.055) 0.048 (0.036) 0.072 (0.057) 0.008 (0.008) 0.038 (0.030) 0.102 (0.064)
HDyQuaDapt 0.049 (0.047) 0.039 (0.031) 0.059 (0.050) 0.050 (0.044) 0.026 (0.021) 0.038 (0.033)
DyS 0.065 (0.047) 0.035 (0.029) 0.062 (0.050) 0.002 (0.005) 0.016 (0.013) 0.065 (0.051)
DySQuaDapt 0.044 (0.051) 0.030 (0.027) 0.060 (0.054) 0.010 (0.010) 0.013 (0.011) 0.038 (0.033)
SMM 0.102 (0.063) 0.070 (0.044) 0.079 (0.058) 0.006 (0.006) 0.053 (0.035) 0.114 (0.070)
SMMQuaDapt 0.090 (0.068) 0.065 (0.048) 0.091 (0.064) 0.036 (0.023) 0.048 (0.025) 0.065 (0.053)
QuaDapt win rate 100% (8/8) 100% (8/8) 63% (5/8) 13% (1/8) 100% (8/8) 100% (8/8)
Quantifiers Mfeat Mosquitoes Nursery Phishing URL Satimage Walking
Baseline (CC) 0.052 (0.036) 0.062 (0.043) 0.022 (0.018) 0.018 (0.015) 0.034 (0.023) 0.098 (0.066)
ACC 0.058 (0.039) 0.060 (0.042) 0.027 (0.020) 0.026 (0.018) 0.090 (0.064) 0.062 (0.049)
ACCQuaDapt 0.042 (0.032) 0.045 (0.033) 0.027 (0.025) 0.018 (0.015) 0.034 (0.023) 0.073 (0.056)
X 0.058 (0.038) 0.055 (0.039) 0.026 (0.018) 0.019 (0.014) 0.058 (0.036) 0.070 (0.059)
XQuaDapt 0.042 (0.032) 0.045 (0.033) 0.027 (0.025) 0.018 (0.015) 0.033 (0.023) 0.072 (0.056)
MAX 0.048 (0.036) 0.054 (0.042) 0.025 (0.018) 0.018 (0.014) 0.051 (0.035) 0.078 (0.067)
MAXQuaDapt 0.044 (0.033) 0.048 (0.036) 0.028 (0.027) 0.018 (0.015) 0.034 (0.023) 0.077 (0.065)
T50 0.075 (0.056) 0.111 (0.081) 0.120 (0.082) 0.049 (0.042) 0.167 (0.115) 0.066 (0.055)
T50QuaDapt 0.069 (0.055) 0.106 (0.086) 0.161 (0.136) 0.103 (0.074) 0.053 (0.046) 0.063 (0.058)
MS 0.064 (0.043) 0.097 (0.065) 0.084 (0.054) 0.036 (0.027) 0.144 (0.100) 0.074 (0.062)
MSQuaDapt 0.064 (0.045) 0.071 (0.055) 0.074 (0.058) 0.020 (0.017) 0.054 (0.038) 0.070 (0.052)
HDy 0.039 (0.031) 0.055 (0.041) 0.031 (0.024) 0.017 (0.014) 0.064 (0.043) 0.073 (0.062)
HDyQuaDapt 0.035 (0.029) 0.042 (0.031) 0.050 (0.036) 0.025 (0.021) 0.038 (0.039) 0.055 (0.047)
DyS 0.038 (0.029) 0.040 (0.030) 0.020 (0.018) 0.014 (0.012) 0.035 (0.025) 0.066 (0.058)
DySQuaDapt 0.037 (0.027) 0.048 (0.033) 0.027 (0.023) 0.013 (0.011) 0.017 (0.013) 0.067 (0.053)
SMM 0.051 (0.035) 0.070 (0.046) 0.051 (0.032) 0.023 (0.017) 0.090 (0.057) 0.071 (0.056)
SMMQuaDapt 0.059 (0.038) 0.067 (0.044) 0.049 (0.036) 0.019 (0.014) 0.049 (0.027) 0.083 (0.063)
QuaDapt win rate 75% (6/8) 88% (7/8) 25% (2/8) 63% (5/8) 100% (8/8) 50% (4/8)

ated quantifiers, underscoring its robustness to provide broad and reliable per-
formance gains across different data distributions and drift conditions.

Among the quantifiers, XQuaDapt achieved the highest win rate, improving its
standard version in 83% of the datasets, followed by ACCQuaDapt, MAXQuaDapt,
MSQuaDapt, and HDyQuaDapt, each with a 75.0% win rate. For T50QuaDapt, DySQuaDapt,
and SMMQuaDapt, the framework improved their performance in 67%. On aver-
age, across all datasets and quantifiers, the framework provided an improvement
of 73%, highlighting its consistent ability to enhance quantification performance
under distribution shifts.

Dermatology and Nursery datasets emerged as special cases in our evalua-
tion. Both datasets present a very high F1-scores for the harder subclasses (0.97
and 0.92), indicating that even their harder scenarios remain relatively simple,
with well-separated classes and low ambiguity. As a result, standard quantifiers
already achieve near-optimal accuracy, leaving limited space for QuaDapt to pro-
vide improvements. Nevertheless, the proposal achieved competitive results for
some quantifiers, such as ACCQuaDapt, MAXQuaDapt, and XQuaDapt, confirming that
even in easy scenarios where performance margins are narrow, QuaDapt can still
match standard methods. In summary, the poor win rates observed in these
datasets (13% and 25%) reflect the absence of meaningful drift challenges rather
than a shortcoming of the framework itself.
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Due to the lack of space, Figure 3 presents the results4 for only five quanti-
fiers for Avila and Chess game datasets, where the contribution of our proposal
was most evident. This figure shows the performance of five quantifiers as the
proportion of the harder subclass increases. Larger proportions of the harder
subclass lead to greater overlap between classes, thereby making the task pro-
gressively more difficult. The vertical dashed line at 0.5 indicates the scenario
where training and test sets have the equivalent complexity. For both selected
datasets, traditional quantification methods tend to exhibit optimal performance
under conditions akin to those undergone during training. However, their effec-
tiveness diminishes even in less challenging scenarios, surprisingly. In contrast,
the QuaDapt methods show greater resilience in different conditions, maintaining
more stable performance in both easier and harder settings.
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Fig. 3: Quantifiers MAE by harder subclass proportion.

In general, our results on real-world datasets are consistent with the findings
from our first experimental setup using artificial scores. Specifically, methods
that rely strictly on score distributions and correction rates derived from the
training data tend to perform poorly when there is a mismatch between the
training and testing distributions, a condition commonly observed under distri-
bution shifts. This degradation occurs even when the test distribution becomes
more separable, which makes the task easier.

We highlight a fundamental contrast between classification and quantifica-
tion under changing data conditions. In classification, when the underlying task
becomes easier, such as when the decision boundary becomes more distinct or
class separation increases, classification accuracy typically improves, reflecting
the reduced complexity of the decision space. However, as observed in both artifi-
cial and real-world experiments, this expected behavior does not hold for existing
quantifiers. Many quantification methods remain vulnerable, even when the test
distribution becomes more separable. This counterintuitive behavior further ex-
poses a critical weakness in current quantification methods. The improvements
4 All results are available in our supplemental material repository (https://github.
com/JPOrtegaa/QuaDapt-Lequa25)

https://github.com/JPOrtegaa/QuaDapt-Lequa25
https://github.com/JPOrtegaa/QuaDapt-Lequa25
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observed with QuaDapt quantifiers directly address this issue, demonstrating that
quantifiers can and should respond positively to easier test conditions.

6 Conclusion

In this paper, we present QuaDapt, a generic and adaptable framework that en-
ables classifier-based quantifiers to be more resilient to a wide range of distribu-
tion shifts, including concept drift. While traditional quantifiers have primarily
focused on addressing prior probability drift, QuaDapt enhances this capability
by dynamically adjusting quantifier parameters based on the observed charac-
teristics of test-time score distributions. This adjustment enables quantifiers to
remain effective even when changes in data distribution impact classifier outputs.

Among our main contributions, we formalized the QuaDapt framework and
demonstrated its effectiveness through extensive experiments on both synthetic
and real-world datasets. Our findings provide the first empirical evidence that
quantifiers can and should adapt to favorable distributional changes, such as
increased class separability, where existing methods frequently fail.

Future research involves integrating drift detection mechanisms and system-
atically investigating how types of distribution shifts impact quantifier behavior,
improving our understanding of quantification vulnerabilities in real-world, non-
stationary settings.
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